Baccalauréat S Métropole- La Réunion 12 septembre 2016 - Correction Exercice 1

Page 2 sur 10: Correction Exercice 1

Correction de l'exercice 1 (6 points)


Commun à tous les candidats


Les trois parties sont indépendantes. Les résultats des probabilités seront arrondis à $10^{-3} $ près.

Partie 1


On estime qu'en 2013 la population mondiale est composée de 4,6 milliards de personnes âgées de 20 à 79 ans et que 46,1 % des personnes âgées de 20 à 79 ans vivent en zone rurale et 53,9 % en zone urbaine. En 2013, d'après la fédération internationale du diabète, 9,9 % de la population mondiale âgée de 20 à 79 ans vivant en zone urbaine est atteinte de diabète et 6,4 % de la population mondiale âgée de 20 à 79 ans vivant en zone rurale est atteinte de diabète. On interroge au hasard une personne âgée de 20 à 79 ans. On note :

  • $R$ l'évènement : «la personne choisie habite en zone rurale » ,
  • $D$ l'évènement: «la personne choisie est atteinte de diabète » .

 

  1. Traduire cette situation à l'aide d'un arbre de probabilité.
    1. Calculer la probabilité que la personne interrogée soit diabétique.
    2. D’après la formule des probabilités totales on a :
      $\begin{align*} p(D)&=p(D\cap R)+p\left(D\cap \overline{R}\right) \\ &=0,461\times 0,064+0,539\times 0,099
      &=0,082~865
      &\approx 0,083
      \end{align*}$
      $\quad$
    3. La personne choisie est diabétique. Quelle est la probabilité qu'elle habite en zone rurale ?
    4. On veut calculer :
      $\begin{align*} p_D(R)&=\dfrac{p(D \cap R)}{p(D)} \\ &\approx\dfrac{0,461 \times 0,064}{0,083} \\ &\approx 0,355
      \end{align*}$
      Remarque : On obtient environ $0,356$ quand on garde la valeur exacte trouvée à la question 2.a.

 

Partie 2


Une personne est dite en hypoglycémie si sa glycémie à jeun est inférieure à 60 mg.dL$^{-1}$ et elle est en hyperglycémie si sa glycémie à jeun est supérieure à 110 mg. dL$^{-1}$. La glycémie à jeun est considérée comme «normale »  si elle est comprise entre 70 mg.dL$^{-1}$ et 110 mg.dL$^{-1}$. Les personnes ayant un taux de glycémie compris entre 60 et 70 mg.dL$^{-1}$ ne font pas l'objet d'un suivi particulier. On choisit au hasard un adulte dans cette population. Une étude a permis d'établir que la probabilité qu'il soit en hyperglycémie est 0,052 à $10^{-3}$ près. Dans la suite on admettra que cette probabilité est égale à $0,052$. On modélise la glycémie à jeun, exprimée en mg.dL$^{-1}$, d'un adulte d'une population donnée, par une variable aléatoire $X$ qui suit une loi normale d'espérance $\mu$ et d'écart-type $\sigma$. On donne ci-dessous la représentation graphique de la densité de probabilité de la variable aléatoire $X$.

  1. Quelle est la probabilité que la personne choisie ait une glycémie à jeun «normale»  ?
  2. On veut calculer $P(70\leq X \leq 110)$.
    On sait que $P(X > 110) = 0,052$.
    Or $\mu=90$ donc $P(X<70)=P(X>110)$.
    Ainsi
    $\begin{align*} P(70\leq X \leq 110) &=1-P(X<70)-P(X>110) \\ &=1-0,052-0,052 \\ &=0,896
    \end{align*}$
  3. Déterminer la valeur de $\sigma$ arrondie au dixième.
  4. On note $Z=\dfrac{X-90}{\sigma}$.
    Cette variable aléatoire suit la loi normale centrée réduite.
    $\begin{align*} P(70\leq X \leq 110) =0,896 &\iff P(-20 \leq X-90 \leq 20) = 0,896\\ &\iff P\left(-\dfrac{20}{\sigma} \leq \dfrac{X-90}{\sigma} \leq \dfrac{20}{\sigma}\right) = 0,896 \\ &\iff P\left(-\dfrac{20}{\sigma} \leq Z \leq \dfrac{20}{\sigma}\right) = 0,896 \\ &\iff 2P\left(Z \leq \dfrac{20}{\sigma}\right)-1= 0,896 \\ &\iff 2P\left(Z \leq \dfrac{20}{\sigma}\right)= 1,896 \\ &\iff P\left(Z \leq \dfrac{20}{\sigma}\right)= 0,948
    \end{align*}$
    Par conséquent, en utilisant la fonction inverse loi normale de la calculatrice, on trouve $\dfrac{20}{\sigma} \approx 1,626$.
    Donc $\sigma \approx \dfrac{20}{1,626}$ soit $\sigma \approx 12,3$
  5. Dans cette question, on prend $\sigma = 12$. Calculer la probabilité que la personne choisie soit en hypoglycémie.
  6. La probabilité que la personne choisie soit en hypoglycémie est $P(X<60)$. À la calculatrice, pour la variable aléatoire $X$ qui suit la loi normale de paramètres $\mu=90$ et $\sigma=12$, on trouve $P(X < 60)\approx 0,006$. La probabilité, arrondie au millième, que la personne choisie soit en hypoglycémie est 0,006.

 

Partie 3


Afin d'estimer la proportion, pour l'année 2013, de personnes diagnostiquées diabétiques dans la population française âgée de 20 à 79 ans, on interroge au hasard 10000 personnes. Dans l'échantillon étudié, 716 personnes ont été diagnostiquées diabétiques.

  1. À l'aide d'un intervalle de confiance au niveau de confiance 95 % , estimer la proportion de personnes diagnostiquées diabétiques dans la population française âgée de 20 à 79 ans.
  2. La fréquence observée est $f=\dfrac{716}{10~000}=0,071~6$
    Un intervalle de confiance au niveau de confiance $95\%$ est :
    $\begin{align*} I_{10~000}&=\left[0,071~6-\dfrac{1}{\sqrt{10~000}};0,071~6+\dfrac{1}{\sqrt{10~000}} \right] \\ &=[0,061~6;0,0816]
    \end{align*}$
  3. Quel doit être le nombre minimal de personnes à interroger si l'on veut obtenir un intervalle de confiance d'amplitude inférieure ou égale à 0,01 ?
  4. On appelle $n$ la taille de l’échantillon étudié pour un caractère dont la fréquence d’apparition est $f$.
    L’amplitude de l’intervalle de confiance est alors :
    $\begin{align*} A&=f+\dfrac{1}{\sqrt{n}}-\left(f-\dfrac{1}{\sqrt{n}}\right) \\ &=\dfrac{2}{\sqrt{n}}
    \end{align*}$
    On veut donc que :
    $\begin{align*} \dfrac{2}{\sqrt{n}} \leq 0,01 &\iff \sqrt{n}\geq \dfrac{2}{0,01} \\ &\iff \sqrt{n} \geq 200 \\ &\iff n\geq 40~000
    \end{align*}$
    Il faut donc interroger au moins $40~000$ personnes.
Exercice 2
Page
  • Vues: 18329

Rechercher