Baccalauréat S Amérique du Sud 22 novembre 2016 - Correction Exercice 2

Page 4 sur 12: Correction Exercice 2

Correction de l'exercice 2 (3 points)


Commun à tous les candidats


Commun à tous les candidats

 


Pour chacune des trois propositions suivantes, indiquer si elle est vraie ou fausse et justifier la réponse choisie. Il est attribué un point par réponse exacte correctement justifiée. Une réponse non justifiée n'est pas prise en compte.
On munit le plan complexe d'un repère orthonormé direct $\left(\text{O},~\vec{u},~\vec{v}\right)$.

Proposition 1


L'ensemble des points du plan d'affixe $z$ tels que $|z - 4| = |z + 2\text{i}|$ est une droite qui passe par le point A d'affixe 3i.

On appelle $B$ le point d’affixe $4$, $C$ celui d’affixe $-2\text{i}$ et $M$ celui d’affixe $z$.
Par conséquent $|z-4|=|z+2\text{i}| \iff BM=CM$.
L’ensemble cherché est donc la médiatrice du segment $[BC]$.
Calculons $AB=|4-3\text{i}|=\sqrt{4^2+(-3)^2}=5$
et $AC=|-2\text{i}-3\text{i}|=|-5\text{i}|=5$.
Ainsi $AB=AC$. Le point $A$ appartient à la médiatrice du segment $[BC]$.
La proposition est vraie.

$\quad$

Proposition 2


Soit $(E)$ l'équation $(z -1)\left(z^2 - 8z + 25\right) = 0$ où $z$ appartient à l'ensemble $\mathbb C$ des nombres complexes. Les points du plan dont les affixes sont les solutions dans $\mathbb C$ de l'équation $(E)$ sont les sommets d'un triangle rectangle.

Résolvons tout d’abord l’équation $z^2-8z+25=0$
$\Delta = (-8)^2-4\times 25 = -36<0$
Cette équation possède donc deux racines complexes conjuguées :
$z_1=\dfrac{8-\text{i}\sqrt{36}}{2}=4-3\text{i}$ et $z_2=4+3\text{i}$

$(z-1)(z^2-8z+25)=0 \iff z-1=0 \text{ ou } z^2-8z+25=0$
Les solutions de l’équation $(E)$ sont donc $\lbrace 1;4-3\text{i};4+3\text{i} \rbrace$

On appelle $A$ le point d’affixe $1$, $B$ celui d’affixe $4-3\text{i}$ et $C$ celui d’affixe $4+3\text{i}$.

$AB=\left|4-3\text{i}-1\right| = \left|3-3\text{i}\right|=\sqrt{18}$

$AC=\left|4+3\text{i}-1\right| = \left|3+3\text{i}\right|=\sqrt{18}$

$BC=\left|4+3\text{i}-4+3\text{i}\right|=\left|6\text{i}\right|=6$

Dans le triangle $ABC$, le plus grand côté est $[BC]$.
D’une part $BC^2=36$.
D’autre part $AB^2+AC^2=18+18=36$.

D’après la réciproque du théorème de Pythagore, le triangle $ABC$ est rectangle en $A$.
La proposition est vraie.

Remarque : on pouvait également déterminer l’argument du nombre complexe $\dfrac{z_1-1}{z_2-1}$ et montrer que celui-ci était égal à $\pm \dfrac{\pi}{2}$.

$\quad$

Proposition 3


$\dfrac{\pi}{3}$ est un argument du nombre complexe $\left(- \sqrt{3} + \text{i}\right)^8$.

On a $\left|-\sqrt{3}+\text{i}\right|=2$ donc $\sqrt{3}+\text{i}=2\left|-\dfrac{\sqrt{3}}{2}+\dfrac{\text{i}}{2}\right|=2\text{e}^{5\text{i}\pi/6}$.
Par conséquent un argument de $\left(-\sqrt{3}+\text{i}\right)$ est $8\times \dfrac{5\pi}{6}=\dfrac{20\pi}{3}=6\pi+\dfrac{2\pi}{3}$.
Par conséquent, la mesure principale de cet argument est $\dfrac{2\pi}{3}$ et non $\dfrac{\pi}{3}$.
La proposition est fausse.

Exercice 3
Page
  • Vues: 29625

Rechercher