Baccalauréat S Métropole - La Réunion 12 septembre 2017 - Spécialité

Page 9 sur 10: Spécialité

Spécialité 5 points


Candidats AYANT SUIVI l'enseignement de spécialité mathématiques

Partie A

Dans l'espace rapporté à un repère orthonormé $\left(\text{O},~\vec{i},~\vec{j},~\vec{k}\right)$, on considère les points A$(1~;~5~;~- 2)$, B$(7~;~- 1~;~3)$ et C$(- 2~;~7~;~-2)$ et on note $P$ le plan (ABC). On cherche une équation cartésienne du plan $P$ sous la forme : $ax + by + cz = 73$, où $a,\: b$ et $c$ sont des nombres réels. On note $X$ et $Y$ les matrices colonnes : $X = \begin{pmatrix}a\\b\\c\end{pmatrix}$ et $Y = \begin{pmatrix}1\\1\\1\end{pmatrix}$.

  1. Montrer que $X$ vérifie la relation : $MX = 73Y$, où $M$ est la matrice $M = \begin{pmatrix}1&5&- 2\\7&- 1&3\\- 2&7&- 2\end{pmatrix}$.
  2. Soit $N$ la matrice : $N = \begin{pmatrix}19&4&- 13\\- 8&6&17\\- 47&17&36\end{pmatrix}$. À l'aide d'une calculatrice, on a calculé les produits $M \times N$ et $N \times M$, et on a obtenu les copies d'écran suivantes : $$ \begin{array}{cc} \text{Pour } M \times N : & \text{Pour }N \times M : \\ \begin{array}{|r| r r r|}\hline {}{Ans}& {c}{1}&{c}{2}& {c}{3}\\\hline 1& 73&0&0\\ 2&0&73&0\\ 3& 0 &0 &73\\ \hline \end{array}&\begin{array}{|r |r r r|}\hline {}{Ans}& {c}{1}&{c}{2}& {c}{3}\\\hline 1& 73&0&0\\ 2&0&73&0\\ 3& 0 &0 &73\\ \hline \end{array}\\ \end{array} $$ À l'aide de ces informations, justifier que la matrice $M$ est inversible et exprimer sa matrice inverse $M^{-1}$ en fonction de la matrice $N$.
  3. Montrer alors que : $X = NY$. En déduire que le plan $P$ admet pour équation cartésienne : $10x + 15y + 6z = 73$.

Partie B

L'objectif de cette partie est l'étude des points à coordonnées entières du plan $P$ ayant pour équation cartésienne : $10x + 15y + 6z = 73$.

  1. Soit $M(x~;~y~;~z)$ un point appartenant au plan $P$ et au plan d'équation $z = 3$. On suppose que les coordonnées $x$, $y$ et $z$ appartiennent à l'ensemble $\mathbb{Z}$ des entiers relatifs.
    1. Montrer que les entiers $x$ et $y$ sont solutions de l'équation $(E)$ : $2x + 3y = 11$.
    2. Justifier que le couple $(7~;~- 1)$ est une solution particulière de $(E)$ puis résoudre l'équation $(E)$ pour $x$ et $y$ appartenant à $\mathbb{Z}$.
    3. Montrer qu'il existe exactement deux points appartenant au plan $P$ et au plan d'équation $z = 3$ et dont les coordonnées appartiennent à l'ensemble $\mathbb{N}$ des entiers naturels. Déterminer les coordonnées de ces deux points.
  2. Dans cette question, on se propose de déterminer tous les points $M(x~;~y~;~z)$ du plan $P$ dont les coordonnées sont des entiers naturels. Soient $x$, $y$ et $z$ des entiers naturels tels que $10x + 15y + 6z = 73$.
    1. Montrer que $y$ est impair.
    2. Montrer que: $x \equiv 1 \quad[3]$. On admet que : $z \equiv 3 \quad[5]$.
    3. On pose alors : $x = 1 + 3p$, $y= 1 + 2q$ et $z = 3 + 5r$, où $p$, $q$ et $r$ sont des entiers naturels. Montrer que le point $M(x~;~y;~z)$ appartient au plan $P$ si et seulement si $p + q + r = 1$.
    4. En déduire qu'il existe exactement trois points du plan $P$ dont les coordonnées sont des entiers naturels. Déterminer les coordonnées de ces points.
Correction Spécialité
Page
  • Vues: 25378

Rechercher