Baccalauréat S Liban 29 mai 2018 - Correction Exercice 2

Page 4 sur 12: Correction Exercice 2

Correction de l'exercice 2 (3 points)


Commun à tous les candidats

  1. Donner les formes exponentielle et trigonométrique des nombres complexes $1 + \text{i}$ et $1 - \text{i}$.
  2. $|1+\text{i}|=\sqrt{2}$
    Donc $1+\text{i}=\sqrt{2}\left(\dfrac{\sqrt{2}}{2}+\text{i}\dfrac{\sqrt{2}}{2}\right)=\sqrt{2}\text{e}^{\text{i}\pi/4}$ (forme exponentielle).
    On a aussi $1+\text{i}=\sqrt{2}\left(\cos\dfrac{\pi}{4}+\text{i} \sin \dfrac{\pi}{4}\right)$ (forme trigonométrique).
    $\quad$
    On remarque que $1-\text{i}=\overline{1+\text{i}}=\sqrt{2}\text{e}^{-\text{i}\pi/4}$ (forme exponentielle).
    Par conséquent $1-\text{i}=\sqrt{2}\left(\cos \left(-\dfrac{\pi}{4}\right)+\text{i} \sin \left(-\dfrac{\pi}{4}\right)\right)$ (forme trigonométrique).
    $\quad$
  3. Pour tout entier naturel $n$, on pose \[S_n = (1 + \text{i})^n + (1 - \text{i})^n.\]
    1. Déterminer la forme trigonométrique de $S_n$.
    2. La formule d’Euler nous permet d’écrire $\cos \theta = \dfrac{\text{e}^{\text{i} \theta}+\text{e}^{\text{i} \theta}}{2}$
      $\begin{align*} S_n&=(1+\text{i})^n+(1-\text{i})^n \\
      &=\sqrt{2}^n\text{e}^{n\text{i}\pi/4}+\sqrt{2}^n\text{e}^{-n\text{i}\pi/4} \\
      &=\sqrt{2}^n \left(\text{e}^{n\text{i}\pi/4}+\text{e}^{-n\text{i}\pi/4}\right) \\
      &=\sqrt{2}^n \times 2\times \dfrac{\text{e}^{n\text{i}\pi/4}+\text{e}^{-n\text{i}\pi/4}}{2}\\
      &=2\sqrt{2}^n\cos\left(\dfrac{n\pi}{4}\right) \quad(*)
      \end{align*}$
      $\dfrac{n\pi}{4}$ va prendre les valeurs $0$, $\dfrac{\pi}{4}$, $\dfrac{\pi}{2}$, $\dfrac{3\pi}{4}$, $\pi$, $\dfrac{5\pi}{4}$, $\dfrac{3\pi}{2}$ et $\dfrac{7\pi}{4}$ à $2\pi$ près.
      Donc
      $\bullet$ si $n$ est de la forme $8k+3$, $8k+4$ ou $8k+5$ alors la forme trigonométrique de $S_n$ est $S_n= 2\sqrt{2}^n\cos\left(\dfrac{n\pi}{4}-\pi\right)\left(\cos \pi+\text{i}\sin \pi\right)$ où $k\in \mathbb{Z}$
      $\bullet$ si $n$ est de la forme $8k+2$, $8k+6$ alors $S_n=0$ où $k\in \mathbb{Z}$
      $\bullet$ dans les autres cas, la forme trigonométrique de $S_n$ est $S_n=2\sqrt{2}^n\cos\left(\dfrac{n\pi}{4}\right) \left(\cos 0+\text{i}\sin 0\right)$ où $k\in \mathbb{Z}$.
      Remarque : La forme $(*)$ n’est pas la forme trigonométrique mais la forme algébrique de $S_n$
      $\quad$
    3. Pour chacune des deux affirmations suivantes, dire si elle est vraie ou fausse en justifiant la réponse. Une réponse non justifiée ne sera pas prise en compte et l'absence de réponse n'est pas pénalisée.
      Affirmation A : Pour tout entier naturel $n$, le nombre complexe $S_n$ est un nombre réel.
      Affirmation B : Il existe une infinité d'entiers naturels $n$ tels que $S_n = 0$.
    4. Affirmation A vraie
      D’après la réponse précédente $S_n=2\sqrt{2}^n\cos\left(\dfrac{n\pi}{4}\right) \in \mathbb{R}$.
      $\quad$
      Affirmation B vraie
      si $n$ est de la forme $8k+2$, $8k+6$ alors $S_n=0$ avec $k\in \mathbb{Z}$.

 

Exercice 3
Page
  • Vues: 24044

Rechercher