Baccalauréat S Liban 29 mai 2018 - Correction Exercice 4

Page 8 sur 12: Correction Exercice 4

Correction Exercice 4 5 points


Commun à tous les candidats
On considère, pour tout entier $n > 0$, les fonctions $f_n$ définies sur l'intervalle $[1~;~5] $par: \[f_n(x) = \dfrac{\ln x}{x^n}.\] . Pour tout entier $n > 0$, on note $\mathcal{C}_n$ la courbe représentative de la fonction $f_n$ dans un repère orthogonal. Sur le graphique ci-dessous sont représentées les courbes $\mathcal{C}_n$ pour $n$ appartenant à $\{1~;~2~;~3~;~4\}$.
Ex4 Liban

  1. Montrer que, pour tout entier $n > 0$ et tout réel $x$ de l'intervalle $[1~;~5] $: \[f'_n(x) = \dfrac{1- n\ln (x)}{x^{n+1}}.\]
  2. Pour entier naturel $n$ non nul, la fonction $f_n$ est dérivable sur l’intervalle $[1;5]$ en tant que quotient de fonctions dérivables dont le dénominateur ne s’annule pas.
    $\begin{align*} f’_n(x)&=\dfrac{\dfrac{1}{x}x^n-nx^{n-1}\ln(x)}{x^{2n}} \\
    &=\dfrac{x^{n-1}-nx^{n-1}\ln(x)}{x^{2n}} \\
    &=\dfrac{x^{n-1}\left(1-n\ln(x)\right)}{x^{2n}} \\
    &=\dfrac{1-n\ln(x)}{x^{n+1}}
    \end{align*}$
  3. Pour tout entier $n > 0$, on admet que la fonction $f_n$ admet un maximum sur l'intervalle [1~;~5]. On note $A_n$ le point de la courbe $\mathcal{C}_n$ ayant pour ordonnée ce maximum. Montrer que tous les points $A_n$ appartiennent à une même courbe $\Gamma$ d'équation \[y = \dfrac{1}{\text{e}} \ln (x).\]
  4. Pour tout entier naturel $n$ non nul, le maximum est atteint quand $f’_n(x)=0$
    $\iff 1-n\ln(x)=0$
    $\iff \ln(x)=\dfrac{1}{n}$
    $\iff x=\text{e}^{1/n}$
    L’ordonnée du maximum est alors :
    $\begin{align*} f_n\left(\text{e}^{1/n}\right)&=\dfrac{~~\dfrac{1}{n}~~}{\text{e}^{n\times 1/n}} \\
    &=\dfrac{~~\dfrac{1}{n}~~}{ \text{e}} \\
    &=\dfrac{\ln\left(\text{e}^{1/n}\right)}{\text{e}}
    \end{align*}$
    Les points $A_n$ appartiennent donc à la courbe $\Gamma$.
    1. Montrer que, pour tout entier $n > 1$ et tout réel $x$ de l'intervalle $[1~;~5] $: \[0 \leqslant \dfrac{\ln (x)}{x^n} \leqslant \dfrac{\ln (5)}{x^n}.\]
    2. La fonction $\ln$ est strictement croissante sur l’intervalle $[1;5]$.
      par conséquent :
      $\begin{align*} 1\leq x\\5 &\iff \ln(1) \leq \ln(x) \leq \ln(5) \\
      &\iff 0 \leq \ln(x) \leq \ln(5) \\
      &\iff 0\leq \dfrac{\ln(x)}{x^n}\leq \dfrac{\ln(5)}{x^n}
      \end{align*}$
      $\quad$
    3. Montrer que pour tout entier $n > 1$ : \[\displaystyle\int_1^5 \dfrac{1}{x^n} \:\text{d}x = \dfrac{1}{n - 1}\left(1 - \dfrac{1}{5^{n - 1}} \right).\]
    4. $\begin{align*} \displaystyle \int_1^5 \dfrac{1}{x^n}\:\text{d}x &=\int_1^5 x^{-n}\:\text{d}x \\
      &=\left[\dfrac{x^{-n+1}}{-n+1}\right]_1^5 \\
      &=\dfrac{5^{-n+1}-1^{-n+1}}{-n+1} \\
      &=\dfrac{1-5^{-n+1}}{n-1} \\
      &=\dfrac{1}{n-1}\left(1-\dfrac{1}{5^{n-1}}\right)
      \end{align*}$
      $\quad$
    5. Pour tout entier $n > 0$, on s'intéresse à l'aire, exprimée en unités d'aire, de la surface sous la courbe $f_n$, c'est-à-dire l'aire du domaine du plan délimité par les droites d'équations $x = 1$, $x = 5$, $y = 0$ et la courbe $\mathcal{C}_n$. Déterminer la valeur limite de cette aire quand $n$ tend vers $+ \infty$.
    6. Pour tout entier naturel $n$ non nul, la fonction $f_n$ est positive sur l’intervalle $[1;5]$ comme quotient de fonction positive sur cet intervalle.
      Ainsi l’aire cherchée est $I_n=\displaystyle \int_1^5 \dfrac{1}{x^n}\:\text{d}x $.
      Or, d’après la question précédente $I_n=\dfrac{1}{n-1}\left(1-\left(\dfrac{1}{5}\right)^{n-1}\right)$
      On a $-1<\dfrac{1}{5}<1$ donc $\lim\limits_{n \to +\infty}\left(\dfrac{1}{5}\right)^{n-1} = 0$.
      De plus $\lim\limits_{n \to +\infty} \dfrac{1}{n-1}=0$.
      Donc $\lim\limits_{n \to +\infty} I_n=0$.
      $\quad$
Exercice 5
Page
  • Vues: 24042

Rechercher