Rédigé par Luc Giraud le . Publié dans Annales STI2D 2015.

Bac STI2D Métropole 18 juin 2015

Exercice 1 4 points


QCM


Cet exercice est un questionnaire à choix multiples. Pour chacune des questions suivantes, une seule des quatre réponses proposées est exacte. Aucune justification n'est demandée. Une bonne réponse rapporte un point. Une mauvaise réponse, plusieurs réponses ou l'absence de réponse à une question ne rapportent ni n'enlèvent de point. Indiquer sur la copie le numéro de la question et la lettre correspondant à la réponse.

  1. On considère le nombre complexe $z=3\mathrm{e}^{-\mathrm{i}\frac{\pi}{6}}$ . La forme algébrique du nombre complexe $z$ est :
    1. $-\dfrac{3\sqrt 3}{2 }+ \dfrac{3}{2}\mathrm{i}$
    2. $\dfrac{3\sqrt 3}{2 }- \dfrac{3}{2}\mathrm{i}$
    3. $\dfrac{3\sqrt 3}{2 }+ \dfrac{3}{2}\mathrm{i}$
    4. $-\dfrac{3\sqrt 3}{2 }- \dfrac{3}{2}\mathrm{i}$
  2. $z_1=1+\mathrm{i}\sqrt 3$ et $z_2=\sqrt 3 -\mathrm{i}$. La forme exponentielle du nombre complexe $z_1\times z_2$ est :
    1. $4\mathrm{e}^{\mathrm{i}\frac{\pi}{6}}$
    2. $-4\mathrm{e}^{-\mathrm{i}\frac{5\pi}{6}}$
    3. $2\mathrm{e}^{\mathrm{i}\frac{\pi}{6}}$
    4. $4\mathrm{e}^{\mathrm{i}\frac{\pi}{2}}$
  3. Les solutions de l'équation différentielle $y''+\dfrac{1}{3}y=0$ sont de la forme :
    1. $t\mapsto \dfrac{1}{\sqrt{3}}t^2$
    2. $t\mapsto A\cos\left( \dfrac{1}{\sqrt{3}}t\right)+ B\sin\left( \dfrac{1}{\sqrt{3}}t\right)$
    3. $t\mapsto Ae^{-\sqrt{3}t}$
    4. $t\mapsto -\dfrac{1}{3}$
  4. La fonction$f$ est définie sur l'intervalle $]-1;+\infty[$ par $f(x)= 2+\dfrac{1}{x+1}$ La limite de cette fonction $f$ en $+\infty$ est
    1. $-\infty$
    2. $+\infty$
    3. 0
    4. 2

 


Correction de l'exercice 1 (4 points)


QCM

Cet exercice est un questionnaire à choix multiples. Pour chacune des questions suivantes, une seule des quatre réponses proposées est exacte. Aucune justification n'est demandée. Une bonne réponse rapporte un point. Une mauvaise réponse, plusieurs réponses ou l'absence de réponse à une question ne rapportent ni n'enlèvent de point. Indiquer sur la copie le numéro de la question et la lettre correspondant à la réponse.

  1. On considère le nombre complexe $z=3\mathrm{e}^{-\mathrm{i}\frac{\pi}{6}}$ . La forme algébrique du nombre complexe $z$ est :
    1. $-\dfrac{3\sqrt 3}{2 }+ \dfrac{3}{2}\mathrm{i}$
    2. $\dfrac{3\sqrt 3}{2 }- \dfrac{3}{2}\mathrm{i}$
    3. $\dfrac{3\sqrt 3}{2 }+ \dfrac{3}{2}\mathrm{i}$
    4. $-\dfrac{3\sqrt 3}{2 }- \dfrac{3}{2}\mathrm{i}$
  2. $$\begin{array}{rl} z&=3\mathrm{e}^{-\mathrm{i}\frac{\pi}{6}}\\ &= 3\left(\cos\left(\frac{-\pi}{6}\right) + \mathrm{i} \sin\left(-\frac{\pi}{6}\right)\right)\\ &= 3\left( \dfrac{\sqrt 3}{2} + \mathrm{i} \times \left(-\dfrac{1}{2}\right)\right)\\ &=\dfrac{3\sqrt 3}{2 }- \dfrac{3}{2}\mathrm{i} \end{array}$$
    Réponse b.
  3. $z_1=1+\mathrm{i}\sqrt 3$ et $z_2=\sqrt 3 -\mathrm{i}$. La forme exponentielle du nombre complexe $z_1\times z_2$ est :
    1. $4\mathrm{e}^{\mathrm{i}\frac{\pi}{6}}$
    2. $-4\mathrm{e}^{-\mathrm{i}\frac{5\pi}{6}}$
    3. $2\mathrm{e}^{\mathrm{i}\frac{\pi}{6}}$
    4. $4\mathrm{e}^{\mathrm{i}\frac{\pi}{2}}$
  4. On peut traiter cette question de différentes façons ... $$\begin{array}{rl} Z=z_1\times z_2&=\left(1+\mathrm{i}\sqrt 3\right)\times \left(\sqrt 3 -\mathrm{i}\right) \\ &= \sqrt 3 -\mathrm{i} + 3\mathrm{i} +\sqrt 3\\ &= 2\sqrt 3 +2\mathrm{i} \end{array}$$

    On met alors ce nombre sous forme exponentielle : $|Z| = \sqrt{ \left(2\sqrt 3\right)^2 +2^2} = \sqrt{16}=4$
    Donc $Z = 4 \left( \dfrac{\sqrt{3}}{2} +\mathrm{i}\dfrac{1}{2}\right) = 4\text{e}^{\mathrm{i}\pi/6} $
    Réponse a.
  5. Les solutions de l'équation différentielle $y''+\dfrac{1}{3}y=0$ sont de la forme :
    1. $t\mapsto \dfrac{1}{\sqrt{3}}t^2$
    2. $t\mapsto A\cos\left( \dfrac{1}{\sqrt{3}}t\right)+ B\sin\left( \dfrac{1}{\sqrt{3}}t\right)$
    3. $t\mapsto Ae^{-\sqrt{3}t}$
    4. $t\mapsto -\dfrac{1}{3}$
  6. L 'équation différentielle $y''+\dfrac{1}{3}y=0$ est du type $y'' + \omega ^2 y =0$ où $\omega ^2 = \dfrac{1}{3}$; on choisit donc $\omega = \dfrac{1}{\sqrt{3}}$;
    La solution générale de cette équation diffdérentielle est donc $ y = A\cos\left( \dfrac{1}{\sqrt{3}}t\right)+ B\sin\left( \dfrac{1}{\sqrt{3}}t\right)$

    Réponse b.
  7. La fonction$f$ est définie sur l'intervalle $]-1;+\infty[$ par $f(x)= 2+\dfrac{1}{x+1}$
    La limite de cette fonction $f$ en $+\infty$ est
    1. $-\infty$
    2. $+\infty$
    3. 0
    4. 2
  8. $\lim\limits_{x \to +\infty} \dfrac{1}{x+1}= 0$, et donc $\lim\limits_{x \to +\infty} 2+ \dfrac{1}{x+1}= 2$

    Réponse d.

 


Exercice 2 5 points


Equations différentielles et fonction exponentielle


Dans cet exercice, les résultats seront arrondis à $10^{-2}$ près.
Une fibre optique est un fil très fin, en verre ou en plastique, qui a la propriété d'être un conducteur de la lumière et sert dans la transmission d'un signal véhiculant des données.
La puissance du signal, exprimée en milliwatts ($mW$), s'atténue au cours de la propagation. On note $P_E$ et $P_S$ les puissances respectives du signal à l'entrée et à la sortie d'une fibre. Pour une fibre de longueur $L$ exprimée en kilomètres ($km$), la relation liant $P_E$ , $P_S$ et $L$ est donnée par : $P_S = P_E\times e^{-aL}$ où $a$ est le coefficient d'atténuation linéaire dépendant de la fibre. Une entreprise utilise deux types de fibre optique de coefficients d'atténuation différents.
Dans tout l'exercice :

 

Partie A

Le premier type de fibre de longueur 100 $km$ utilisé par l'entreprise a un coefficient d'atténuation linéaire $a = 0,046$. Pour ce type de fibre, sera-t-il nécessaire de placer au moins un amplificateur sur la ligne pour que le signal soit détectable en sortie ?

Partie B

La puissance du signal le long du second type de fibre est modélisée par une fonction $g$ de la variable $x$, où $x$ étant la distance en kilomètres parcourue par le signal depuis l'entrée de la fibre. On admet que cette fonction $g$ est définie et dérivable sur l'intervalle $[0 ;+\infty[$ et qu'elle est solution sur cet intervalle de l'équation différentielle $y' + 0,035y = 0$.

  1. Résoudre l'équation différentielle $y' + 0,035y = 0$.
    1. Sachant que $g(0) = 7$, vérifier que la fonction g est définie sur l'intervalle $[0 ;+\infty[$ par $g(x) = 7e^{-0,035x}$.
    2. En déduire le coefficient d'atténuation de cette fibre.
    1. Étudier le sens de variation de la fonction $g$
    2. Déterminer la limite de la fonction $g$ en $+\infty$.
    1. Le signal sera-t-il encore détecté au bout de 100 $km$ de propagation?
    2. Déterminer la longueur maximale de la fibre permettant une détection du signal à la sortie sans amplification.

 


Correction de l'exercice 2 (5 points)


Equations différentielles et fonction exponentielle


Dans cet exercice, les résultats seront arrondis à $10^{-2}$ près.
Une fibre optique est un fil très fin, en verre ou en plastique, qui a la propriété d'être un conducteur de la lumière et sert dans la transmission d'un signal véhiculant des données.
La puissance du signal, exprimée en milliwatts ($mW$), s'atténue au cours de la propagation. On note $P_E$ et $P_S$ les puissances respectives du signal à l'entrée et à la sortie d'une fibre. Pour une fibre de longueur $L$ exprimée en kilomètres ($km$), la relation liant $P_E$ , $P_S$ et $L$ est donnée par : $P_S = P_E\times e^{-aL}$ où $a$ est le coefficient d'atténuation linéaire dépendant de la fibre. Une entreprise utilise deux types de fibre optique de coefficients d'atténuation différents.
Dans tout l'exercice :

 

Partie A
Le premier type de fibre de longueur 100 $km$ utilisé par l'entreprise a un coefficient d'atténuation linéaire $a = 0,046$. Pour ce type de fibre, sera-t-il nécessaire de placer au moins un amplificateur sur la ligne pour que le signal soit détectable en sortie ?

Le coefficient d'atténuation linéaire $a = 0,046$ donc $P_S = 7\times e^{-0,046 \times 100 }\approx 0,07$

$P_S < 0,08$ donc il sera nécessaire de placer au moins un amplificateur sur la ligne pour que le signal soit détectable en sortie.
Pour $L= 100 km $;

Partie B

La puissance du signal le long du second type de fibre est modélisée par une fonction $g$ de la variable $x$, où $x$ étant la distance en kilomètres parcourue par le signal depuis l'entrée de la fibre. On admet que cette fonction $g$ est définie et dérivable sur l'intervalle $[0 ;+\infty[$ et qu'elle est solution sur cet intervalle de l'équation différentielle $y' + 0,035y = 0$.

    1. Résoudre l'équation différentielle $y' + 0,035y = 0$.
    2. Déjà on met cette équation sous forme résolue : $y' + 0,035y = 0 \iff y'=-0,035y $ Cette équation différentielle est du type $y'= a y$ où $a= -0,035$



La solution générale de cette équation est $y= Ce^{-0,035x}$ où $C\in \mathbb R$

        1. Sachant que $g(0) = 7$, vérifier que la fonction g est définie sur l'intervalle $[0 ;+\infty[$ par $g(x) = 7e^{-0,035x}$.
        2. $g$ est une solution de l'équation différentielle donc $g(x)= Ce^{-0,035x}$ $$\begin{array}{rl} g(0)=7 &\iff Ce^{-0,035 \times 0 }= 7\\ & \iff Ce^{ 0 }= 7\\ & \iff C = 7\\ \end{array}$$

      La fonction $g$ est donc bien définie sur l'intervalle $[0 ;+\infty[$ par $g(x) = 7e^{-0,035x}$.
        1. En déduire le coefficient d'atténuation de cette fibre.
        2. $a= 0,035$


      Le coefficient d'atténuation de cette fibre est $a = 0,035$.
        1. Étudier le sens de variation de la fonction $g$
        2. Pour cela on étudie le signe de la dérivée. $$\begin{array}{rl} g'(x)&= 7\times \left(-0,035\right)e^{-0,035x}\\ &=-0,245e^{-0,035x}\\ \end{array}$$ On a ici utilsé la formuule de dérivation $$\left(e ^u \right)'=u'e^u$$ Etudions alors le signez de la dérivée :

          Comme la fonction exponentielle est strictement positive sur $\mathbb R$ et comme $-0,035<0$ on déduit $ g'(x) < 0$ ce qui prouve que la fonction $g$ est strictement décroissante sur $[0 ;+\infty[$
        1. Déterminer la limite de la fonction $g$ en $+\infty$.
        2. $\left.\begin{array}{l} \lim\limits_{x \to +\infty } -0,035x=-\infty\\ \lim\limits_{t \to -\infty}~e ^t = 0 \end{array}\right\}$ par composée on obtient: $\lim\limits_{x \to + \infty}~g(x) =0$


      $\lim\limits_{x \to + \infty}~g(x) =0$
        1. Le signal sera-t-il encore détecté au bout de 100 $km$ de propagation?
        2. Pour savoir si le signal sera encore détecté au bout de 100 $km$ de propagation, on calcule $g(100) = 7e^{-0,035 \times 100}=7e^{- 3,5 }\approx 0,21$.

          Or $0,21 > 0, 08$


      Le signal sera donc encore détecté au bout de 100 $km$ de propagation.
      1. Déterminer la longueur maximale de la fibre permettant une détection du signal à la sortie sans amplification.
    1. On cherche le plus grand réel $x$ tel que $g(x)\leq 0, 08$ $$\begin{array}{rll} g(x)\leq 0, 08& \iff 7e^{-0,035x} \leq 0,08&\\ & \iff e^{-0,035x} \leq \dfrac{0,08}{7}&\\ & \iff \ln\left(e^{-0,035x} \right)\leq \ln\left( \dfrac{0,08}{7}\right)& \text{ car la fonction } \ln \text{ est strictement croissante sur } ]0 ;+\infty[ \\ &\iff -0,035x \leq \ln\left( \dfrac{0,08}{7}\right)&\\ &\iff x \geq \dfrac{ \ln\left( \dfrac{0,08}{7}\right)}{-0,035}&\text{ en divisant par } -0,035 < 0\\ \end{array}$$ $$\dfrac{ \ln\left( \dfrac{0,08}{7}\right)}{-0,035}\approx 127,76$$


La longueur maximale de la fibre permettant une détection du signal à la sortie sans amplification est environ 128 $km$.

 


Exercice 3 6 points


Suites


Le parc de véhicules particuliers (VP) et de véhicules utilitaires légers (VUL) circulant en France est essentiellement constitué de véhicules thermiques (principalement essence, gasoil et GPL).
Pour lutter contre la pollution, il intègre de plus en plus de véhicules à « faible émission de CO2 » c'est à dire des véhicules hybrides (véhicules thermiques assistés d'un moteur électrique) et des véhicules électriques.
Document 1 Au regard du parc et des ventes de véhicules en 2010, l'ADEME (Agence de l'Environnement et de la Maîtrise de l'Energie) a mobilisé ses services techniques et économiques en 2012, afin d'élaborer des visions énergétiques. Afin de répondre aux enjeux environnementaux, l'ADEME prévoit d'atteindre pour le parc 2030 un taux moyen d'émission de C0$_2$ par véhicule de $100 ~g/km$.

Ventes et prévisions


$$\begin{array}{|c|c|c|c|c|}\hline \textbf{Véhicules ( VP- VUL)} & \textbf{Vente 2010} & \textbf{Parc 2010}& \textbf{Prévisions Vente 2030}& \textbf{Prévisions parc 2030} \\ \hline \text{Véhicules thermiques} & 100 \% & 100 \% & 64 \% & 89 \%\\ \hline \text{Véhicules hybrides }& 0 \% & 0 \% & 24\% & 7 \%\\ \hline \text{ Véhicules électriques} & 0 \% & 0 \% & 12 \% & 4 \%\\ \hline \textbf{ Total des voitures VP et VUL} & 2,2 \text { millions}& 35 \text{ millions} & 2\text{ millions}& 35\text{ millions}\\ \hline \text{Emission moyenne de } C0_2 \text{ par véhicule}& 127 ~g/km &165 ~g/km & 49 ~g/km & 100 ~g/km\\ \hline \end{array}$$
Ventes nationales de véhicules entre 2011 et 2013
$$\begin{array}{|c|c|c|c|}\hline \textbf{Véhicules ( VP- VUL)} & \textbf{Ventes 2011} & \textbf{Ventes 2012}& \textbf{Ventes 2013}\\ \hline \text{Véhicules hybrides }& 13~600 & 27~ 730 &41~ 340\\ \hline \text{ Véhicules électriques} & 4313 & 9314 & 13 ~954\\ \hline \textbf{ Total des ventes y compris véhicules thermiques} & 2~ 204 ~ 065 & 1 ~ 898 ~ 872 & 1 ~ 790 ~ 000\\ \hline \end{array}$$

 

Partie A
  1. Selon les prévisions de l'ADEME, quel serait en 2030 le nombre de véhicules hybrides vendus ?
  2. Selon les prévisions de l’ADEME, quel serait en 2030 le pourcentage de véhicules à faible émission de CO$_2$ dans le parc automobile ?

 

Partie B
  1. Le tableau suivant est incomplet. Déterminer le pourcentage d'augmentation des ventes de véhicules hybrides de 2012 à 2013. $$\begin{array}{|c| c|c|}\hline \text{Véhicules ( VP- VUL)} & \text{Augmentation des ventes de véhicules} \\ \hline & \text{de 2011 à 2012} &\text{de 2012 à 2013}\\ \hline \text{Véhicules hybrides }& 103,9\% &\cdots\\ \hline \text{ Véhicules électriques} & 116 \% & 49,8\%\\ \hline \end{array}$$
  2. Après un fort démarrage des ventes de véhicules hybrides, les professionnels de l'automobile envisagent une augmentation de leurs ventes de 16 % par an de 2013 à 2030. Le nombre de véhicules hybrides vendus en 2013 est de 41 340. On décide de modéliser les ventes annuelles de véhicules hybrides par une suite géométrique de raison 1,16. On note un le nombre de véhicules hybrides vendus durant l'année 2013 + $n$.
    1. Donner $u_0$.
    2. Exprimer $u_n$ en fonction de $n$.
    3. L'augmentation de 16 % par an des ventes de véhicules hybrides permettrait-elle d'atteindre la prévision de l'ADEME pour l'année 2030 ?
  3. Les professionnels de l'automobile s'intéressent aussi aux ventes de véhicules électriques de 2013 à 2030.
    Le nombre de véhicules électriques vendus en 2013 est de 13 954.
    1. On réalise sur tableur une feuille de calcul qui détermine le nombre de véhicules électriques vendus de 2013 à 2030 en supposant une augmentation annuelle de 16 % à partir de 2013.
      $$\begin{array}{ |c| c|c|}\hline &A &B \\ \hline 1& \text{ Année} &\text{ Prévision des ventes des voitures électriques}\\ \hline 2 & 2013 & 13954\\ \hline 3 & 2014 & 16186, 64\\ \hline 4 & 2015 & 18 776, 5024\\ \hline 5 & 2016 & 21780, 74278\\ \hline 6 & 2017 & 25265, 66163\\ \hline 7 & 2018 & 29308, 16749\\ \hline 8 & 2019 & 33997, 47429\\ \hline 9 & 2020 & 39437, 07017\\ \hline 10 & 2021 & 45747, 0014 \\ \hline 11 & 2022 & 53066, 52163\\ \hline 12 & 2023& 61557, 16509\\ \hline 13 & 2024 & 71406, 3115\\ \hline 14 & 2025 & 82831, 32134\\ \hline 15 & 2026 & 96084, 33276\\ \hline 16 & 2027 & 111457, 826\\ \hline 17 & 2028 & 129291, 0782\\ \hline 18 & 2029 & 149977, 6507\\ \hline 19 & 2030 & 173974, 0748\\ \hline \end{array}$$
      Donner la formule saisie dans la cellule B3 de la feuille de calcul ci-dessus pour compléter le tableau par « recopie vers le bas ».
    2. Ce taux d'augmentation annuel permettrait-il d'atteindre les prévisions de l'ADEME des ventes de véhicules électriques en 2030 ?
  4. Les professionnels de l'automobile cherchent un pourcentage d'augmentation annuelle des ventes de véhicules électriques qui permettrait d'atteindre les prévisions de l' ADEME en 2030.
    On considère l'algorithme suivant :
    $$\begin{array}{|ll|}\hline \text{ Variables :}&\\ &\hspace{1em}u : \text{ un nombre réel} \\ &\hspace{1em}q : \text{ un nombre réel}\\ \textbf{Initialisation}&\\ & \hspace{1em}\text{ Affecter à } u \text{ la valeur }173~974\\ &\hspace{1em}\text{ Affecter à } q \text{ la valeur } 1,16\\ \textbf{Traitement}&\\ & \hspace{1em}\text{ Tant que } u\leqslant 240~000 \\ &\hspace{2em} q \text{ prend la valeur } q+0,01\\ &\hspace{2em}u \text{ prend la valeur } 13 ~954 \times q^{17}\\ & \hspace{1em}\text{ Fin Tant que }\\ \textbf{Sortie}& \\ &\hspace{1em}\text{ Afficher } (q-1) \times 100\\ \hline\end{array}$$
    1. Que représente la valeur 173 974 prise par la variable u dans l'initialisation de l'algorithme ?
    2. Faire fonctionner cet algorithme. Pour cela reproduire et compléter le tableau ci- dessous. Des lignes supplémentaires pourront être ajoutées.
      $$\begin{array}{|c| c|c|}\hline \text{Etapes de l'algorithme} & \text{Variables} \\ \hline & q &u\\ \hline \text{Initialisation }& 1,16 &173 ~974\\ \hline \text{ Etape 1 } & \cdots & \cdots\\ \hline \text{ Etape 2 } & \cdots & \cdots\\ \hline \cdots & \cdots & \cdots\\ \hline \end{array}$$
    3. Quelle est la valeur affichée par l'algorithme ? Interpréter le résultat.

Correction de l'exercice 3 (5 points)


Suites


Le parc de véhicules particuliers (VP) et de véhicules utilitaires légers (VUL) circulant en France est essentiellement constitué de véhicules thermiques (principalement essence, gasoil et GPL).
Pour lutter contre la pollution, il intègre de plus en plus de véhicules à « faible émission de CO2 » c'est à dire des véhicules hybrides (véhicules thermiques assistés d'un moteur électrique) et des véhicules électriques.
Document 1 Au regard du parc et des ventes de véhicules en 2010, l'ADEME (Agence de l'Environnement et de la Maîtrise de l'Energie) a mobilisé ses services techniques et économiques en 2012, afin d'élaborer des visions énergétiques. Afin de répondre aux enjeux environnementaux, l'ADEME prévoit d'atteindre pour le parc 2030 un taux moyen d'émission de C0$_2$ par véhicule de $100 ~g/km$.

Ventes et prévisions


$$\begin{array}{|c|c|c|c|c|}\hline \textbf{Véhicules ( VP- VUL)} & \textbf{Vente 2010} & \textbf{Parc 2010}& \textbf{Prévisions Vente 2030}& \textbf{Prévisions parc 2030} \\ \hline \text{Véhicules thermiques} & 100 \% & 100 \% & 64 \% & 89 \%\\ \hline \text{Véhicules hybrides }& 0 \% & 0 \% & 24\% & 7 \%\\ \hline \text{ Véhicules électriques} & 0 \% & 0 \% & 12 \% & 4 \%\\ \hline \textbf{ Total des voitures VP et VUL} & 2,2 \text { millions}& 35 \text{ millions} & 2\text{ millions}& 35\text{ millions}\\ \hline \text{Emission moyenne de } C0_2 \text{ par véhicule}& 127 ~g/km &165 ~g/km & 49 ~g/km & 100 ~g/km\\ \hline \end{array}$$
Ventes nationales de véhicules entre 2011 et 2013
$$\begin{array}{|c|c|c|c|}\hline \textbf{Véhicules ( VP- VUL)} & \textbf{Ventes 2011} & \textbf{Ventes 2012}& \textbf{Ventes 2013}\\ \hline \text{Véhicules hybrides }& 13~600 & 27~ 730 &41~ 340\\ \hline \text{ Véhicules électriques} & 4313 & 9314 & 13 ~954\\ \hline \textbf{ Total des ventes y compris véhicules thermiques} & 2~ 204 ~ 065 & 1 ~ 898 ~ 872 & 1 ~ 790 ~ 000\\ \hline \end{array}$$

 

Partie A
  1. Selon les prévisions de l'ADEME, quel serait en 2030 le nombre de véhicules hybrides vendus ?
  2. Selon les prévisions de l'ADEME,en 2030 7% du parc automobile sera de type hybride, donc le nombre de véhicules hybrides vendus en 2030 sera de 24% fois 2 millions :

    En 2030 24% des véhicules vendus sera de type hybride, donc le nombre de véhicules hybrides vendus en 2030 sera de 480 000.
  3. Selon les prévisions de l’ADEME, quel serait en 2030 le pourcentage de véhicules à faible émission de CO$_2$ dans le parc automobile ?
  4. Selon les prévisions de l’ADEME, en 2030 le pourcentage de véhicules à faible émission de CO$_2$ dans le parc automobile serait de 11 %.

 

Partie B
  1. Le tableau suivant est incomplet. Déterminer le pourcentage d'augmentation des ventes de véhicules hybrides de 2012 à 2013. $$\begin{array}{|c| c|c|}\hline \text{Véhicules ( VP- VUL)} & \text{Augmentation des ventes de véhicules} \\ \hline & \text{de 2011 à 2012} &\text{de 2012 à 2013}\\ \hline \text{Véhicules hybrides }& 103,9\% &\cdots\\ \hline \text{ Véhicules électriques} & 116 \% & 49,8\%\\ \hline \end{array}$$
  2. L'augmentation des ventes de véhicules hybrides de 2012V à 2013 est de 13610 ( 41340 - 27 7730 = 13610).
    Or $\dfrac{13610}{27730}\approx 0, 4908$

    Le pourcentage d'augmentation des ventes de véhicules hybrides de 2012 à 2013 est environ de 49 %.

  3. Après un fort démarrage des ventes de véhicules hybrides, les professionnels de l'automobile envisagent une augmentation de leurs ventes de 16 % par an de 2013 à 2030. Le nombre de véhicules hybrides vendus en 2013 est de 41 340. On décide de modéliser les ventes annuelles de véhicules hybrides par une suite géométrique de raison 1,16. On note $u_n$ le nombre de véhicules hybrides vendus durant l'année 2013 + $n$.
    1. Donner $u_0$.
    2. $u_0$ est le nombre de véhicules hybrides vendus durant l'année 2013, daprès le tableau du document 2

      $u_0= 41 340$
    3. Exprimer $u_n$ en fonction de $n$.
    4. Comme $(u_n)$ est une suite géométrique de raison 1,16 de premier terme $u_0$; on a :

      $u_n= q^n \times u_0= 41 340 \times 1,16^n$
    5. L'augmentation de 16 % par an des ventes de véhicules hybrides permettrait-elle d'atteindre la prévision de l'ADEME pour l'année 2030 ?
    6. Pour le savoir on calcule $u_{17}=q^{17}\times u_0= 41340\times 1,16^{17} =515414$.
      24% de 2 millions font $0,24\times 2 \times 10 ^6 = 480 000$. Comme $515414 > 480 000$

      L'augmentation de 16 % par an des ventes de véhicules hybrides permettra donc d'atteindre la prévision de l'ADEME pour l'année 2030.
  4. Les professionnels de l'automobile s'intéressent aussi aux ventes de véhicules électriques de 2013 à 2030.
    Le nombre de véhicules électriques vendus en 2013 est de 13 954.
    1. On réalise sur tableur une feuille de calcul qui détermine le nombre de véhicules électriques vendus de 2013 à 2030 en supposant une augmentation annuelle de 16 % à partir de 2013.
      $$\begin{array}{ |c| c|c|}\hline &A &B \\ \hline 1& \text{ Année} &\text{ Prévision des ventes des voitures électriques}\\ \hline 2 & 2013 & 13954\\ \hline 3 & 2014 & 16186, 64\\ \hline 4 & 2015 & 18 776, 5024\\ \hline 5 & 2016 & 21780, 74278\\ \hline 6 & 2017 & 25265, 66163\\ \hline 7 & 2018 & 29308, 16749\\ \hline 8 & 2019 & 33997, 47429\\ \hline 9 & 2020 & 39437, 07017\\ \hline 10 & 2021 & 45747, 0014 \\ \hline 11 & 2022 & 53066, 52163\\ \hline 12 & 2023& 61557, 16509\\ \hline 13 & 2024 & 71406, 3115\\ \hline 14 & 2025 & 82831, 32134\\ \hline 15 & 2026 & 96084, 33276\\ \hline 16 & 2027 & 111457, 826\\ \hline 17 & 2028 & 129291, 0782\\ \hline 18 & 2029 & 149977, 6507\\ \hline 19 & 2030 & 173974, 0748\\ \hline \end{array}$$
      Donner la formule saisie dans la cellule B3 de la feuille de calcul ci-dessus pour compléter le tableau par « recopie vers le bas ».


    2. La formule saisie en B3 est = B2* 1,16.
    3. Ce taux d'augmentation annuel permettrait-il d'atteindre les prévisions de l'ADEME des ventes de véhicules électriques en 2030 ?
    4. Pour le savoir, on note $v_n$ le nombre de véhicules électriques vendus durant l'année 2013 + $n$;
      $(v_n)$ est également géométrique de raison 1,16 de premier terme $v_0= 13954$
      Alors $v_{17}= 13 954\times 1,16^{17}= 173974$
      12% de 2 millions font $0,12\times 2 \times 10 ^6 = 240 000$. Comme $173974 < 240 000 $

      L'augmentation de 16 % par an des ventes de véhicules électriques ne permettra pas d'atteindre la prévision de l'ADEME pour l'année 2030.
  5. Les professionnels de l'automobile cherchent un pourcentage d'augmentation annuelle des ventes de véhicules électriques qui permettrait d'atteindre les prévisions de l' ADEME en 2030.
    On considère l'algorithme suivant :
    $$\begin{array}{|ll|}\hline \text{ Variables :}&\\ &\hspace{1em}u : \text{ un nombre réel} \\ &\hspace{1em}q : \text{ un nombre réel}\\ \textbf{Initialisation}&\\ & \hspace{1em}\text{ Affecter à } u \text{ la valeur }173~974\\ &\hspace{1em}\text{ Affecter à } q \text{ la valeur } 1,16\\ \textbf{Traitement}&\\ & \hspace{1em}\text{ Tant que } u\leqslant 240~000 \\ &\hspace{2em} q \text{ prend la valeur } q+0,01\\ &\hspace{2em}u \text{ prend la valeur } 13 ~954 \times q^{17}\\ & \hspace{1em}\text{ Fin Tant que }\\ \textbf{Sortie}& \\ &\hspace{1em}\text{ Afficher } (q-1) \times 100\\ \hline\end{array}$$
    1. Que représente la valeur 173 974 prise par la variable u dans l'initialisation de l'algorithme ?
    2. La valeur 173 974 prise par la variable u, correspond au nombre de véhicules électriques vendus en 2030, si on augmente de 16 % par an la vente des véhicules électriques de 2013 à 2030.
    3. Faire fonctionner cet algorithme. Pour cela reproduire et compléter le tableau ci- dessous. Des lignes supplémentaires pourront être ajoutées.
      $$\begin{array}{|c| c|c|}\hline \text{Etapes de l'algorithme} & \text{Variables} \\ \hline & q &u\\ \hline \text{Initialisation }& 1,16 &173 ~974\\ \hline \text{ Etape 1 } & \cdots & \cdots\\ \hline \text{ Etape 2 } & \cdots & \cdots\\ \hline \cdots & \cdots & \cdots\\ \hline \end{array}$$
    4. $$\begin{array}{|c| c|c|}\hline \text{Etapes de l'algorithme} & \text{Variables} \\ \hline & q &u\\ \hline \text{Initialisation }& 1,16 &173 ~974\\ \hline \text{ Etape 1 } & 1,17 & 201~306\\ \hline \text{ Etape 2 } & 1,18 & 232~ 644\\ \hline \text{ Etape 3 } & 1,19 & 268 ~532\\ \hline \end{array}$$
    5. Quelle est la valeur affichée par l'algorithme ? Interpréter le résultat.
    6. La valeur afficée par l'algorithme est 19; cela signifie, qu'à 1% près pour atteidre l'objectif de l'ADEME en 2030, il faut augmenter la vente des véhicules électriques de 2013 à 2030 d'environ 19% par an.

Exercice 4 5 points


Probabilités

Dans l'ensemble de l'exercice, les résultats seront arrondis à $10^{-4}$ près. L'usine OCEFRAIS embouteille des jus de fruits. L'étiquette de la bouteille indique 1,5 litre de jus de fruits. Le volume de la bouteille est de 1,55 litre.
A l'embouteillage, le volume de jus de fruits versé dans une bouteille est une variable aléatoire $X$ qui suit la loi normale de moyenne $\mu = 1,5$ et d’écart-type $\sigma = 0,015$.

    1. L'une des trois figures donne la courbe représentative $\mathcal{C}_f$ de la densité $f$ de cette loi normale. Indiquer sur la copie le numéro de la figure correspondante en expliquant votre choix.

      Figure 1
      Figure 2
      Figure 3
    2. Déterminer $P(1,485\leq X\leq 1,515)$.
  1. On choisit au hasard une bouteille de jus de fruits.
    1. Quelle est la probabilité que cette bouteille contienne exactement 1,48 litre de jus de fruits ?
    2. Calculer la probabilité que cette bouteille contienne entre 1,46 litre et 1,54 litre de jus de fruits.
    3. Quelle est la probabilité que cette bouteille déborde sur la chaîne d'embouteillage?
      On rappelle que toutes les bouteilles utilisées ont un volume de 1,55 litre.
  2. Une bouteille est dite conforme si elle contient entre 1,46 litre et 1,54 litre de jus de fruits. Selon l'usine OCEFRAIS, la probabilité qu'une bouteille soit non conforme est 0,0077. Un supermarché achète un lot de 10 000 bouteilles.
    1. Déterminer l'intervalle de fluctuation asymptotique à 95% de la fréquence observée de bouteilles non conformes dans un tel lot.
    2. Dans le lot de 10 000 bouteilles, on a compté 90 bouteilles non conformes. Le gérant du supermarché trouve le nombre de bouteilles non conformes anormalement élevé.
      L'usine OCEFRAIS a-t-elle des raisons de s'inquiéter?

 


Exercice 4 5 points


Probabilités

Dans l'ensemble de l'exercice, les résultats seront arrondis à $10^{-4}$ près. L'usine OCEFRAIS embouteille des jus de fruits. L'étiquette de la bouteille indique 1,5 litre de jus de fruits. Le volume de la bouteille est de 1,55 litre.
A l'embouteillage, le volume de jus de fruits versé dans une bouteille est une variable aléatoire $X$ qui suit la loi normale de moyenne $\mu = 1,5$ et d’écart-type $\sigma = 0,015$.

    1. L'une des trois figures donne la courbe représentative $\mathcal{C}_f$ de la densité $f$ de cette loi normale. Indiquer sur la copie le numéro de la figure correspondante en expliquant votre choix.

      Figure 1
      Figure 2
      Figure 3
    2. On sait que la courde de la densité de probabilité d'une loi normale $\mathcal{N}(\mu;\sigma)$ est symétrique par rapport à la droite d'équation $x=\mu$. Ici $\mu=1,5$ , donc la figure 3 est la la courbe représentative $\mathcal{C}_f$ de la densité $f$ de cette loi normale.
    3. Déterminer $P(1,485\leq X\leq 1,515)$.
    4. 2ND DISTR 2NORMALFRép( \1 , \2,\3,\4)EXE
      Avec une calculatrice de type TI

      $$NormalFR\text{é}p(\1,\2,\3,\4) \approx \5$$

      $$P(\1 \leq \6 \leq \2)\approx \5 \text{ à } 10^{-\7} \text{ près.}$$

       

  1. On choisit au hasard une bouteille de jus de fruits.
    1. Quelle est la probabilité que cette bouteille contienne exactement 1,48 litre de jus de fruits ?
    2. On veut ici $$P(X=148)= \displaystyle\int_{148}^{148}f(t)\;dt= 0$$
    3. Calculer la probabilité que cette bouteille contienne entre 1,46 litre et 1,54 litre de jus de fruits.
    4. On calcule $P(1,46\leq X\leq 1,54)$

      2ND DISTR 2NORMALFRép( \1 , \2,\3,\4)EXE
      Avec une calculatrice de type TI

      $$NormalFR\text{é}p(\1,\2,\3,\4) \approx \5$$

      $$P(\1 \leq \6 \leq \2)\approx \5 \text{ à } 10^{-\7} \text{ près.}$$

       

    5. Quelle est la probabilité que cette bouteille déborde sur la chaîne d'embouteillage?
      On rappelle que toutes les bouteilles utilisées ont un volume de 1,55 litre.
    6. On veut donc ici calculer $P(X\geq 1,55)$

       

      2ND DISTR 2NORMALFRép( $\1$ , $10^{99}$,\2,$\3$)EXE
      Avec une calculatrice de type TI

      $$NormalFR\text{é}p(\1,10^{99},\2,\3) \approx \4$$

      $$P( \5 \geq \1)\approx \4 \text{ à } 10^{-\6} \text{ près.}$$
  2. Une bouteille est dite conforme si elle contient entre 1,46 litre et 1,54 litre de jus de fruits. Selon l'usine OCEFRAIS, la probabilité qu'une bouteille soit non conforme est 0,0077. Un supermarché achète un lot de 10 000 bouteilles.
    1. Déterminer l'intervalle de fluctuation asymptotique à 95% de la fréquence observée de bouteilles non conformes dans un tel lot.
    2. On calcule tout d'abord la probabilité qu'une bouteille soit non conforme  $p = 1 - P(1,46\leq X\leq 1,54)\approx 0,0077$

      La proportion $p$ est égale à  $\1$. La taille  $n$  de l'échantillon considéré est égale à  $\2.$
      Comme  $ n =\2$ ,   $n \times p  $=\3  et $n\times (1-p)=\4,$ les conditions d'utilisation d'un intervalle de fluctuation asymptotique sont réunies.

      En effet on a bien : $$n \geq 30\;;\; n \times p \geq 5 \text{ et } n\times (1-p) \geq 5$$


      L'intervalle de fluctuation asymptotique au seuil de  $95\% $  est : $$I_{\2} = \left[\1 - 1,96\sqrt{\dfrac{\1\times \5}{\2}}~;~\1 + 1,96\sqrt{\dfrac{\1\times \5}{\2}} \right]$$ 

      $$I_{10000}=[0,0060; 0,0094]$$
    3. Dans le lot de 10 000 bouteilles, on a compté 90 bouteilles non conformes. Le gérant du supermarché trouve le nombre de bouteilles non conformes anormalement élevé.
      L'usine OCEFRAIS a-t-elle des raisons de s'inquiéter?
    4. On utilise la règle de décision suivante :
      • On calcule la fréquence de bouteilles non conformes sur un échantillon de 10 000 bouteilles ; ici $f_{obs}= \dfrac{90}{10 000}= 0,009$
      • Si $f_{obs}\in I_{10000}$, on affirme que l'usine OCEFRAIS n'a pas raison de s'inquiéter.
      • Si $f_{obs}\notin I_{10000}$, on affirme que l'usine OCEFRAIS n'a pas raison de s'inquiéter.
      Ici $0,009\in [0,0060; 0,0094]$, et donc l'usine OCEFRAIS n'a pas raison de s'inquiéter.