Baccalauréat STI2D Antilles-Guyane - 19 juin 2019

Exercice 1 4 points


QCM



Cet exercice est un questionnaire à choix multiples. Pour chacune des questions suivantes, une seule des quatre réponses proposées est exacte. Aucune justification n'est demandée. Une bonne réponse rapporte un point. Une mauvaise réponse, plusieurs réponses ou l'absence de réponse ne rapportent ni n'enlèvent aucun point.
Indiquer sur la copie le numéro de la question et la réponse correspondante choisie.
On rappelle que :

  • $\ln$ désigne la fonction logarithme népérien.
  • $\mathrm{i}$ désigne le nombre complexe de module 1 et d'argument $\dfrac{\pi}{2}$

 

  1. Pour tout réel $a$ strictement positif, $\dfrac{\ln(2a)+\ln(8a)}{2}$ est égal à :
    1. $\ln(4a)$
    2. $\ln(5a)$
    3. $\ln(16a)$
    4. $\ln\left(8a^2\right)$
  2. On considère une fonction $f$ définie et dérivable sur $]0 ;+\infty[$. On appelle $\mathcal{C}$ sa courbe représentative dans un repère orthonormé $\left(\text{O},~\vec{i},~\vec{j}\right)$. On admet que $\displaystyle{\lim_{x \to 0}}f(x)=-\infty$ et que $\displaystyle{\lim_{x \to +\infty}}f(x)=+\infty$. La courbe $\mathcal{C}$ admet :
    1. deux asymptotes parallèles à l'axe des ordonnées
    2. une asymptote parallèle à l'axe des ordonnées et une asymptote parallèle à l'axe des abscisses
    3. une asymptote parallèle à l'axe des ordonnées et aucune asymptote parallèle à l'axe des abscisses
    4. deux asymptotes parallèles à l'axe des abscisses
  3. On considère le nombre complexe $z=-2\text{e}^{\mathrm{i}\frac{\pi}{4}}$. Soit $\overline{z}$ le nombre complexe conjugué de $z$. Une écriture exponentielle de $\overline{z}$ est :
    1. $2\text{e}^{\mathrm{i}\frac{\pi}{4}}$
    2. $2\text{e}^{-\mathrm{i}\frac{\pi}{4}}$
    3. $2\text{e}^{-\mathrm{i}\frac{5\pi}{4}}$
    4. $2\text{e}^{\mathrm{i}\frac{5\pi}{4}}$
  4. Le plan complexe est muni d'un repère orthonormé $\left( \mathrm{O};\vec{u},\vec{v} \right)$. Les droites d'équation $y=x$ et $y=-x$ partagent le plan en quatre zones ①, ②, ③ et ④ comme indiqué ci-dessous :
    AG qcm
    Soit $z$ un nombre complexe non nul. On sait que :
    • la partie réelle de $z$ est strictement inférieure à sa partie imaginaire ;
    • un argument de $z$ est strictement compris entre $\dfrac{3\pi}{4}$ et $2\pi$.
    Le point image de $z$ se situe :
    1. dans la zone ①
    2. dans la zone ②
    3. dans la zone ③
    4. dans la zone ④

     


    Correction de l'exercice 1 (4 points)


    QCM

    Cet exercice est un questionnaire à choix multiples. Pour chacune des questions suivantes, une seule des quatre réponses proposées est exacte. Aucune justification n'est demandée. Une bonne réponse rapporte un point. Une mauvaise réponse, plusieurs réponses ou l'absence de réponse ne rapportent ni n'enlèvent aucun point.
        Indiquer sur la copie le numéro de la question et la réponse correspondante choisie.

        On rappelle que :
        • $\ln$ désigne la fonction logarithme népérien.
        • $\mathrm{i}$ désigne le nombre complexe de module 1 et d'argument $\dfrac{\pi}{2}$

     

    1. Pour tout réel $a$ strictement positif, $\dfrac{\ln(2a)+\ln(8a)}{2}$ est égal à :
      1. $\ln(4a)$
      2. $\ln(5a)$
      3. $\ln(16a)$
      4. $\ln\left(8a^2\right)$
    2. Pour tout nombre réel $a$ strictement positif: ln 2 a + ln 8 a 2 = ln 2 a × 8 a 2 = ln 16 a 2 2 = ln 16 a 2 = ln 4 a La bonne réponse est a.
    3. On considère une fonction $f$ définie et dérivable sur $]0 ;+\infty[$. On appelle $\mathcal{C}$ sa courbe représentative dans un repère orthonormé $\left(\text{O},~\vec{i},~\vec{j}\right)$. On admet que $\displaystyle{\lim_{x \to 0}}f(x)=-\infty$ et que $\displaystyle{\lim_{x \to +\infty}}f(x)=+\infty$. La courbe $\mathcal{C}$ admet :
      1. deux asymptotes parallèles à l'axe des ordonnées
      2. une asymptote parallèle à l'axe des ordonnées et une asymptote parallèle à l'axe des abscisses
      3. une asymptote parallèle à l'axe des ordonnées et aucune asymptote parallèle à l'axe des abscisses
      4. deux asymptotes parallèles à l'axe des abscisses
    4. $\displaystyle{\lim_{x \to 0}}f(x)=-\infty$ alors, la courbe $\mathcal{C}$ admet pour asymptote la droite d'équation $x=0$.

 

        $\displaystyle{\lim_{x \to +\infty}}f(x)=+\infty$  alors, la courbe $\mathcal{C}$ n'admet pas d'asymptote parallèle à l'axe des abscisses.

 

        La bonne réponse est c.
      1. On considère le nombre complexe $z=-2\text{e}^{\mathrm{i}\frac{\pi}{4}}$. Soit $\overline{z}$ le nombre complexe conjugué de $z$. Une écriture exponentielle de $\overline{z}$ est :
        1. $2\text{e}^{\mathrm{i}\frac{\pi}{4}}$
        2. $2\text{e}^{-\mathrm{i}\frac{\pi}{4}}$
        3. $2\text{e}^{-\mathrm{i}\frac{5\pi}{4}}$
        4. $2\text{e}^{\mathrm{i}\frac{5\pi}{4}}$
      2. z = - 2 e i π 4 = - 1 × 2 e i π 4 = 2 × e i π × e i π 4 = 2 e i 5 π 4 .

 

        Par conséquent, z ¯ = 2 e - i 5 π 4

 

        La bonne réponse est c.
      1. Le plan complexe est muni d'un repère orthonormé $\left( \mathrm{O};\vec{u},\vec{v} \right)$. Les droites d'équation $y=x$ et $y=-x$ partagent le plan en quatre zones ①, ②, ③ et ④ comme indiqué ci-dessous :
        AG qcm
        Soit $z$ un nombre complexe non nul. On sait que :
        - la partie réelle de $z$ est strictement inférieure à sa partie imaginaire ;
        -un argument de $z$ est strictement compris entre $\dfrac{3\pi}{4}$ et $2\pi$.
        Le point image de $z$ se situe :
        1. dans la zone ①
        2. dans la zone  ②
        3. dans la zone  ③
        4. dans la zone ④
      2. Sur le graphique ci-dessous :
        • La condition « la partie réelle de $z$ est strictement inférieure à sa partie imaginaire » permet d'éliminer la partie du plan grisée.
        • La condition « un argument de z est strictement compris entre $\dfrac{3\pi}{4}$ et $2\pi$ » permet d'éliminer la partie du plan hachurée.

QCM4

        Le point image de z se situe donc dans la zone ③


      Exercice 2 7 points


      Suites


              L'énergie houlomotrice est obtenue par exploitation de la force des vagues. Il existe différents dispositifs pour produire de l'électricité à partir de cette énergie. Les installations houlomotrices doivent être capables de résister à des conditions extrêmes, ce qui explique que le coût actuel de production d'électricité par énergie houlomotrice est élevé. On estime qu'en 2018 le coût de production d'un kilowattheure (kWh) par énergie houlomotrice était de 24 centimes d'euros. C'est nettement plus que le coût de production d'un kilowattheure par énergie nucléaire, qui était de 6 centimes d'euros en 2018. On admet qu'à partir de 2018 les progrès technologiques permettront une baisse de 5\,\% par an du coût de production d'un kilowattheure par énergie houlomotrice. Les deux parties de cet exercice peuvent être traitées de manière indépendante.

      Partie A


        Pour tout entier naturel $n$, on note $c_n$ le coût de production, en centime d'euro, d'un kilowattheure d'électricité produite par énergie houlomotrice pour l'année $2018 + n$. Ainsi, $c_0 =24$.
          1. Calculer $c_1$. Interpréter le résultat dans le contexte de l'exercice.
          2. Déterminer la nature de la suite $\left( c_n \right)$ et donner ses éléments caractéristiques.
          3. Pour tout entier naturel $n$, exprimer $c_n$ en fonction de $n$.
        1. Résoudre dans l'ensemble des entiers naturels l'inéquation $0,95^n < 0,25$.
        2. Dans cette question, on admet que le coût de production d'un kilowattheure par énergie nucléaire reste constant et égal à 6 centimes d'euros. Déterminer l'année à partir de laquelle le coût d'un kilowattheure produit par énergie houlomotrice deviendra inférieur au coût d'un kilowattheure produit par énergie nucléaire.
        3. Dans cette question, on estime que le coût de production d'un kilowattheure par énergie nucléaire va augmenter tous les ans d'un centime d'euro. On souhaite alors déterminer l'année à partir de laquelle le coût d'un kilowattheure produit par énergie houlomotrice deviendra inférieur au coût d'un kilowattheure produit par énergie nucléaire.
          1. Recopier et compléter l'algorithme suivant afin que la valeur de la variable $N$ en sortie d'algorithme permette de répondre au problème. $$\begin{array}{|l|}\hline C \gets 24\\ D \gets 6\\ N \gets 2018\\ \text{Tant que } \cdots\\ \hspace{0.8cm}C \gets \ldots\\\hspace{0.8cm} D \gets \ldots\\ \hspace{0.8cm}N \gets N+1\\ \text{Fin Tant que } \\\hline\end{array}$$
          2. Répondre au problème posé. Aucune justification n'est demandée.

      Partie B


              On admet que la durée de vie d'un composant électronique d'une installation houlomotrice, exprimée en année, est une variable aléatoire $X$ qui suit la loi exponentielle dont le paramètre $\lambda = 0,04$.
              1. Déterminer la durée de vie moyenne de ce composant électronique.
              2. On considère la fonction $f$ définie sur l'intervalle $[0 ; +\infty [$ par $f(x)=0,04\text{e}^{-0,04x}$.
                1. Déterminer une primitive $F$ de la fonction $f$ sur l'intervalle $[0 ; +\infty [$.
                2. On rappelle que, pour tout nombre réel $t$ de l'intervalle $[0 ; +\infty [$ :\[P\left( X\leqslant t \right)=\displaystyle\int_0^t f(x) \mathrm{d}\, x .\] Démontrer que $P\left( X\leqslant t \right)=1-\text{e}^{-0,04t}$.
                1. Calculer $P\left( X> 15\right)$. Donner le résultat arrondi à $10^{-3}$.
                2. Interpréter cette valeur dans le contexte de l'exercice.

            Correction de l'exercice 2 (7 points)


            Suites


              L'énergie houlomotrice est obtenue par exploitation de la force des vagues. Il existe différents dispositifs pour produire de l'électricité à partir de cette énergie. Les installations houlomotrices doivent être capables de résister à des conditions extrêmes, ce qui explique que le coût actuel de production d'électricité par énergie houlomotrice est élevé. On estime qu'en 2018 le coût de production d'un kilowattheure (kWh) par énergie houlomotrice était de 24 centimes d'euros. C'est nettement plus que le coût de production d'un kilowattheure par énergie nucléaire, qui était de 6 centimes d'euros en 2018. On admet qu'à partir de 2018 les progrès technologiques permettront une baisse de 5\,\% par an du coût de production d'un kilowattheure par énergie houlomotrice. Les deux parties de cet exercice peuvent être traitées de manière indépendante.

      Partie A


              Pour tout entier naturel $n$, on note $c_n$ le coût de production, en centime d'euro, d'un kilowattheure d'électricité produite par énergie houlomotrice pour l'année $2018 + n$. Ainsi, $c_0 =24$.
                  1. Calculer $c_1$. Interpréter le résultat dans le contexte de l'exercice.
                  2. Le coefficient multiplicateur associé à une diminution de 5 % est égal à 0,95.

                    $$c_1=24\times 0,95=22,8$$ Ainsi, $c_1 =22,8$ .

                  Le coût de production d'un kilowattheure d'électricité produite par énergie houlomotrice pour l'année 2019 est de 22,8 centimes d'euro.
                1. Déterminer la nature de la suite $\left( c_n \right)$ et donner ses éléments caractéristiques.
                2. Pour tout entier naturel $n , c_{n+1}=0,95c_n$ donc la suite $\left( c_n \right)$ est une suite géométrique de raison $q=0,95$, dont le premier terme est $c_0=24$.
                3. Pour tout entier naturel $n$, exprimer $c_n$ en fonction de $n$.
                4. $\left( c_n \right)$ est une suite géométrique de raison $q=0,95$, dont le premier terme est $c_0=24$ est une suite géométrique de raison alors, pour tout entier naturel $n , c_n=q^n\times c_0$, donc :$$c_n=24\times 0,95^n.$$
              1. Résoudre dans l'ensemble des entiers naturels l'inéquation $0,95^n < 0,25$.
              2. $$\begin{array}{rll} 0,95^n < 0,25& \iff \ln\left (0,95^n\right ) <\ln \left (0,25\right )& \ln \text{est strictement croissante sur } ]0;+\infty[\\ &\iff n\ln\left (0,95 \right ) <\ln \left (0,25\right )& \text{ car } \ln\left (a^n \right )=n\ln a\\ &\iff n> \dfrac{\ln \left ( 0,25\right )}{\ln\left (0,95 \right )}&\text{ car } 0,95 <1 \text{ donc } \ln\left (0,95 \right ) <0\\ \end{array}$$ Grâce à une calculatrice, on obtient $\dfrac{\ln \left ( 0,25\right )}{\ln\left (0,95 \right )}\approx 27,03$.

                Donc le plus petit entier $n$ solution de l'inéquation $0,95^n < 0,25$ est $n=28$ .

                Les solutions entières de l'inéquation $0,95^n < 0,25$ sont les entiers $n\geq 28$.

      Partie B

              1. Dans cette question, on admet que le coût de production d'un kilowattheure par énergie nucléaire reste constant et égal à 6 centimes d'euros. Déterminer l'année à partir de laquelle le coût d'un kilowattheure produit par énergie houlomotrice deviendra inférieur au coût d'un kilowattheure produit par énergie nucléaire.
              2. Dans cette question, on estime que le coût de production d'un kilowattheure par énergie nucléaire va augmenter tous les ans d'un centime d'euro. On souhaite alors déterminer l'année à partir de laquelle le coût d'un kilowattheure produit par énergie houlomotrice deviendra inférieur au coût d'un kilowattheure produit par énergie nucléaire.
                  1. Recopier et compléter l'algorithme suivant afin que la valeur de la variable $N$ en sortie d'algorithme permette de répondre au problème. $$\begin{array}{|l|}\hline C \gets 24\\ D \gets 6\\ N \gets 2018\\ \text{Tant que } \cdots\\ \hspace{0.8cm}C \gets \ldots\\\hspace{0.8cm} D \gets \ldots\\ \hspace{0.8cm}N \gets N+1\\ \text{Fin Tant que } \\\hline\end{array}$$
                  2. tion">Recopier et compléter l'algorithme suivant afin que la valeur de la variable $N$ en sortie d'algorithme permette de répondre au problème. $$\begin{array}{|l|}\hline C \gets 24\\ D \gets 6\\ N \gets 2018\\ \text{Tant que } C\geq D\\ \hspace{0.8cm}C \gets 0,95\times C \\\hspace{0.8cm} D \gets D+1\\ \hspace{0.8cm}N \gets N+1\\ \text{Fin Tant que } \\\hline\end{array}$$
                  3. Répondre au problème posé. Aucune justification n'est demandée.
                  4. On peut programmer l'algorithme sur la calculatrice ou l'exécuter pas à pas. Dans le tableau ci-dessous, les valeurs de $C$ sont arrondies au dixième.

                  $$\begin{array}{|c|c|c|c|c|c|c|c|c|c|c|c|} \hline \text{ Test } C\geq D& \text{ VRAI } & \text{ VRAI }\text{ VRAI }\text{ VRAI }\text{ VRAI }& \text{ VRAI }\text{ VRAI }\text{ VRAI } & \text{ VRAI }\text{ VRAI } & \text{ VRAI } & \text{ VRAI } & \text{ VRAI } & \text{ VRAI } & \text{ VRAI } & \text{ VRAI } & \text{ FAUX } \\ \hline \text{ Valeur de } C& 24& 22,8& 21,7 & 20,6& 19,5& 18,6& 17,6& 16,8& 15,9& 15,1& 14,4 \\ \hline \text{ Valeur de } D& 6& 7& 8& 9 & 10& 11& 12& 13& 14& 15& 16 \\ \hline \text{ Valeur de } N& 2018& 2019& 2020& 2021& 2022& 2023& 2024& 2025& 2026& 2027& 2028 \\ \hline \end{array} $$ C'est à partir de 2028 que le coût d'un kilowattheure produit par énergie houlomotrice deviendra inférieur au coût d'un kilowattheure produit par énergie nucléaire.

      Partie B


              On admet que la durée de vie d'un composant électronique d'une installation houlomotrice, exprimée en année, est une variable aléatoire $X$ qui suit la loi exponentielle dont le paramètre $\lambda = 0,04$.
              1. Déterminer la durée de vie moyenne de ce composant électronique.
              2. L'espérance mathématique de la variable aléatoire $X$ qui suit la loi exponentielle de paramètre $\lambda $ est $E(X)=\dfrac{1}{\lambda}=\dfrac{1}{0,04} =25$

                La durée de vie moyenne du composant électronique est de 25 ans.
              1. On considère la fonction $f$ définie sur l'intervalle $[0 ; +\infty [$ par $f(x)=0,04\text{e}^{-0,04x}$.
                  1. Déterminer une primitive $F$ de la fonction $f$ sur l'intervalle $[0 ; +\infty [$.
                  2. Pour tout réel $x $de l'intervalle $[0;+\infty[$ on pose $u(x)=-0,04 x$, alors $u'(x)=-0,04$. Ainsi, $f(x)=-u'(x)\text{e}^{u(x)}$, d'où $F(x)=-\text{e}^{u(x)}$.

                  Une primitive de la fonction $f$ est la fonction$ F $ définie sur l'intervalle $[0;+\infty[$ par $F(x)=-\text{e}^{-0,04x}$.
                1. On rappelle que, pour tout nombre réel $t$ de l'intervalle $[0 ; +\infty [$ :\[P\left( X\leqslant t \right)=\displaystyle\int_0^t f(x) \mathrm{d}\, x .\] Démontrer que $P\left( X\leqslant t \right)=1-\text{e}^{-0,04t}$.
                2. P X t = 0 t f x d x = F t - F 0 = - e - 0,04 t - - e 0 = - e - 0,04 t + 1 Ainsi $P\left( X\leqslant t \right)=1-\text{e}^{-0,04t}$.
                  1. Calculer $P\left( X> 15\right)$. Donner le résultat arrondi à $10^{-3}$.
                  2. P X > 15 = 1 - P X 15 = 1 - 1 - e - 0,04 × 15 = e - 0,6
                    $P\left( X> 15\right)=\text{e}^{ - 0,6}\approx 0,549$
                  3. Interpréter cette valeur dans le contexte de l'exercice.
                  4. La probabilité que le composant électronique ait une durée de vie supérieure à 15 ans est 0,549.

        Exercice 3 6 points


        Fonctions


                En raison des frottements avec l'atmosphère résiduelle terrestre, les satellites en orbite basse perdent progressivement de l'altitude et finissent par se consumer dans les couches les plus denses de l'atmosphère. Cet événement est appelé rentrée atmosphérique. Le temps, exprimé en jour, avant la rentrée atmosphérique dépend des caractéristiques du satellite et de l'altitude $h$, exprimée en kilomètre, de son orbite. Pour un satellite donné, ce temps est modélisé par une fonction $T$ de la variable $h$, définie et dérivable sur l'intervalle $[0~;~+\infty [$.

        Les trois parties de cet exercice peuvent être traitées de manière indépendante.

        Partie A – Étude d'un premier satellite


                On admet que la fonction $T$, associée à ce premier satellite, est une solution de l'équation différentielle $(E)$ suivante dans laquelle $y$ désigne une fonction de la variable $h$ définie et dérivable sur $[0~;~+\infty [$ et $y'$ la fonction dérivée de $y$.\[(E)\;:\;40y'-y = 0.\]
                1. Résoudre l'équation différentielle $(E)$ sur $[0~;~+\infty [$.
                2. Déterminer la fonction $T$ solution de l'équation différentielle $(E)$ qui vérifie la condition $T(800)= 2000 $.

        Partie B– Étude d'un deuxième satellite


                Dans cette partie, on admet que la fonction $T$, associée à ce deuxième satellite, est définie sur l'intervalle $[0~;~+\infty[$ par : \[T(h) = K\times0,012\text{e}^{0,025(h-150)}.\] Le nombre réel $K$ est appelé coefficient balistique du satellite. La fonction $T$ associée à ce deuxième satellite est représentée ci-après.

        Dans cette partie, on ne demande pas de justification. Les résultats seront donnés avec la précision permise par le graphique.
        Ex sat
        1. À quelle altitude minimale faut-il mettre en orbite ce deuxième satellite pour que le temps restant avant sa rentrée atmosphérique soit au moins égal à 1000 jours ?
        2. Déterminer une valeur approchée du coefficient balistique $K$ de ce deuxième satellite.

        Partie C – Étude d'un troisième satellite : Hubble


                Le satellite Hubble a un coefficient balistique $K$ égal à 11. La fonction $T$, associée à ce troisième satellite, est donc définie sur l'intervalle $[0~;~ +\infty [$ par : \[T(h)=0,132\text{e}^{0,025(h-150)}.\]
                1. L'orbite du satellite Hubble est située à l'altitude $h$ de 575 km. Calculer le temps $T(h)$ restant avant la rentrée atmosphérique du satellite Hubble. Arrondir au jour près.
                2. Déterminer la limite de $T$ en $+\infty$.
                  1. Déterminer $T'(h)$, où $T'$ désigne la fonction dérivée de $T$.
                  2. En déduire le sens de variations de la fonction $T$ sur $[0~;~ +\infty [$.
                3. On souhaite étudier l'effet d'une augmentation de 10 km de l'altitude $h$ sur le temps restant avant la rentrée atmosphérique du satellite Hubble.
                  1. Montrer que $T(h + 10)= \text{e}^{0,25}\times T(h)$.
                  2. En déduire qu'augmenter l'altitude $h$ de 10 km revient à augmenter d'environ 28% le temps restant avant la rentrée atmosphérique du satellite Hubble.

        Correction de l'exercice 3 (6 points)


        Fonctions


                En raison des frottements avec l'atmosphère résiduelle terrestre, les satellites en orbite basse perdent progressivement de l'altitude et finissent par se consumer dans les couches les plus denses de l'atmosphère. Cet événement est appelé rentrée atmosphérique. Le temps, exprimé en jour, avant la rentrée atmosphérique dépend des caractéristiques du satellite et de l'altitude $h$, exprimée en kilomètre, de son orbite. Pour un satellite donné, ce temps est modélisé par une fonction $T$ de la variable $h$, définie et dérivable sur l'intervalle $[0~;~+\infty [$.

        Les trois parties de cet exercice peuvent être traitées de manière indépendante.

        Partie A – Étude d'un premier satellite


                On admet que la fonction $T$, associée à ce premier satellite, est une solution de l'équation différentielle $(E)$ suivante dans laquelle $y$ désigne une fonction de la variable $h$ définie et dérivable sur $[0~;~+\infty [$ et $y'$ la fonction dérivée de $y$.\[(E)\;:\;40y'-y = 0.\]
                1. Résoudre l'équation différentielle $(E)$ sur $[0~;~+\infty [$.
                2. Les solutions de l'équation différentielle $y′=a⁢y+b$ sont les fonctions définies sur $\mathbb R$ par $x\mapsto k\text{e}^{ax}+\dfrac{b}{a}$, où $k$ est une constante réelle quelconque.
                  Or $40⁢y′-y=0\iff y′=0,025\times y$
                  Par conséquent, les solutions de l'équation différentielle (E) sont les fonctions définies sur $[0~;~+\infty [$ par $T⁡(h)=k⁢\text{e}^{0,025 h}$ où $k$ est une constante réelle quelconque.
                3. Déterminer la fonction $T$ solution de l'équation différentielle $(E)$ qui vérifie la condition $T(800)= 2000 $.
                4. $T(800)= 2000 \iff k⁢\text{e}^{0,025 \times 800}=2000\iff k=2000⁢\text{e}^{-20}$
                  La solution de l'équation différentielle (E) qui vérifie la condition $T(800)= 2000 $ est la fonction définie sur $[0~;~+\infty [$ par $T⁡(h)=k⁢\text{e}^{0,025 h-20}$.

        Partie B– Étude d'un deuxième satellite


                Dans cette partie, on admet que la fonction $T$, associée à ce deuxième satellite, est définie sur l'intervalle $[0~;~+\infty[$ par : \[T(h) = K\times0,012\text{e}^{0,025(h-150)}.\] Le nombre réel $K$ est appelé coefficient balistique du satellite. La fonction $T$ associée à ce deuxième satellite est représentée ci-après.

        Dans cette partie, on ne demande pas de justification. Les résultats seront donnés avec la précision permise par le graphique.
        Ex sat
                1. À quelle altitude minimale faut-il mettre en orbite ce deuxième satellite pour que le temps restant avant sa rentrée atmosphérique soit au moins égal à 1000 jours ?
                2. Avec la précision permise par le graphique, $T⁡(h)\geq 1000$ pour $h\geq490$.
                  Pour que le temps restant avant sa rentrée atmosphérique soit au moins égal à 1 000 jours il faut mettre ce deuxième satellite à une altitude supérieure à 490 km.Ex3AG2019
                1. Déterminer une valeur approchée du coefficient balistique $K$ de ce deuxième satellite.
                2. Avec la précision permise par le graphique, plusieurs valeurs sont possibles. Par exemple :
                  • Avec $T⁡(530)=3000$. Une valeur approchée de $K$ est solution de l'équation : $$\begin{array}{rl} T(530)=3000& \iff K\times0,012\text{e}^{0,025(530-150)} =3000\\ & \iff K\times0,012\text{e}^{9,5} =3000 \\ &\iff K= \dfrac{3000}{0,012\text{e}^{9,5}}\\ &\text{Soit } K\approx 18,7 \end{array}$$
                  • Avec $T⁡(550)=4800$. Une valeur approchée de $K$ est solution de l'équation : $$\begin{array}{rl} T(550)=4800& \iff K\times0,012\text{e}^{0,025(550-150)} =4800\\ & \iff K\times0,012\text{e}^{10} =4800 \\ &\iff K= \dfrac{3000}{0,012\text{e}^{10}}\\ &\text{Soit } K\approx 18,2 \end{array}$$
                  Avec la précision permise par le graphique, toute valeur approchée du coefficient balistique $K$ telle que $18\leq K\leq 19 $ est acceptable.

        Partie C – Étude d'un troisième satellite : Hubble


                Le satellite Hubble a un coefficient balistique $K$ égal à 11. La fonction $T$, associée à ce troisième satellite, est donc définie sur l'intervalle $[0~;~ +\infty [$ par : \[T(h)=0,132\text{e}^{0,025(h-150)}.\]
                1. L'orbite du satellite Hubble est située à l'altitude $h$ de 575 km. Calculer le temps $T(h)$ restant avant la rentrée atmosphérique du satellite Hubble. Arrondir au jour près.
                2. $$T⁡(575)=0,0132⁢\text{e}^{0,025\times 425}\approx 5432$$ Le temps restant avant la rentrée atmosphérique du satellite Hubble est d'environ 5 432 jours.
                3. Déterminer la limite de $T$ en $+\infty$.
                4. $\lim\limits_{h\to +\infty} =0,0255\times(h-150) =+\infty $ d'où $\lim\limits_{h\to +\infty} \text{e}^{0,025(h-150)}= +\infty$ et donc $\lim\limits_{h\to +\infty} 0,132\text{e}^{0,025(h-150)}= +\infty $
                  1. Déterminer $T'(h)$, où $T'$ désigne la fonction dérivée de $T$.
                  2. $T $ est solution de l'équation différentielle (E) d'où $T'(h)=0,025\times T⁡(h)$ soit $T'(h)=0,025\times 0,132\text{e}^{0,025(h-150)}=0,00033⁢\text{e}^{0,025(h-150)}$
                    $T'$ est la fonction définie sur l'intervalle $[0;+\infty[$ par :$T'(h)=0,00033⁢\text{e}^{0,025(h-150)}$
                  3. En déduire le sens de variations de la fonction $T$ sur $[0~;~ +\infty [$.
                  4. Pour tout réel $h, 3⁢\text{e}^{0,025(h-150)}>0$ donc $0,00033⁢\text{e}^{0,025(h-150)}> 0$.
                    $T'(h)> 0$ donc la fonction $T $ est strictement croissante sur $[0;+\infty[$.
                5. On souhaite étudier l'effet d'une augmentation de 10 km de l'altitude $h$ sur le temps restant avant la rentrée atmosphérique du satellite Hubble.
                  1. Montrer que $T(h + 10)= \text{e}^{0,25}\times T(h)$.
                  2. T h + 10 = 0,0132 e 0,025 h + 10 - 150 = 0,0132 e 0,025 h - 150 + 0,025 × 10 = 0,0132 e 0,025 h - 150 + 0,25 = 0,0132 e 0,025 h - 150 × e 0,25 Ainsi $T(h + 10)= \text{e}^{0,25}\times T(h)$.
                  3. En déduire qu'augmenter l'altitude $h$ de 10 km revient à augmenter d'environ 28% le temps restant avant la rentrée atmosphérique du satellite Hubble.
                  4. $ \text{e}^{0,025 }\approx 1,284$ d'où $T⁡(h+10)\approx \left(1+\dfrac{28,4}{100}\right)\times T⁡(h)$.
                    Ainsi, augmenter l'altitude $h$ de 10 km revient à augmenter d'environ 28 % le temps restant avant la rentrée atmosphérique du satellite Hubble.

        Exercice 4 3 points


        Probabilités


          Un atelier de mécanique de précision est équipé de machines à commande numérique permettant la production de pièces métalliques en aluminium. Un client passe une commande de pièces dont la longueur souhaitée est de 75 millimètres (mm). Les trois parties de cet exercice peuvent être traitées de manière indépendante. Les résultats seront arrondis, si nécessaire, à $10^{-2}$.

 

Partie A

 

    Le réglage des machines permet de produire des pièces dont la longueur, exprimée en millimètre, est modélisée par une variable aléatoire $X$ qui suit la loi normale d'espérance $\mu =75$ et d'écart-type $\sigma=0,03$. Afin de garantir au client une précision optimale, seules les pièces dont la longueur est comprise entre 74,95 mm et 75,05 mm sont jugées commercialisables.
    1. Déterminer $P(X > 74,97)$.
    2. Déterminer la probabilité qu'une pièce prise au hasard soit commercialisable.

 

Partie B


On souhaite améliorer la précision de la production. Pour cela, les machines sont réglées et reprogrammées.
Après réglage, la longueur des pièces, en millimètre, est modélisée par une variable aléatoire $Y$ suivant une loi normale.
Son espérance est inchangée et vaut $\mu=75$.
La valeur de l'écart-type a été modifiée.
On note $\sigma'$ la nouvelle valeur de l'écart-type. Ces nouveaux réglages permettent de limiter la proportion de pièces non commercialisables.
On a $P\left(74,95 \leqslant Y \leqslant 75,05\right)\approx 0,95$
Déterminer $\sigma'$. Justifier.<

Partie C

 

          On procède à de nouveaux réglages. Le responsable de l'atelier affirme alors être en mesure de commercialiser 97 % des pièces. On procède à un contrôle de qualité en prélevant au hasard 300 pièces métalliques. On constate que $14$ d'entre elles ne sont pas commercialisables. Au seuil de 95 %, faut-il mettre en doute l'affirmation du responsable de l'atelier ? Justifier la réponse.

        On rappelle que lorsque la proportion $p$ dans la population est connue, l'intervalle de fluctuation asymptotique à 95 % d'une fréquence obtenue sur un échantillon de taille $n$ est donné par : \[\left[p-1,96\sqrt{\dfrac{p(1-p)}{n}} ; p-1,96\sqrt{\dfrac{p(1-p)}{n}}\right].\]

         


        Exercice 4 3 points


        Probabilités


          Un atelier de mécanique de précision est équipé de machines à commande numérique permettant la production de pièces métalliques en aluminium. Un client passe une commande de pièces dont la longueur souhaitée est de 75 millimètres (mm). Les trois parties de cet exercice peuvent être traitées de manière indépendante. Les résultats seront arrondis, si nécessaire, à $10^{-2}$.

        Partie A


          Le réglage des machines permet de produire des pièces dont la longueur, exprimée en millimètre, est modélisée par une variable aléatoire $X$ qui suit la loi normale d'espérance $\mu =75$ et d'écart-type $\sigma=0,03$. Afin de garantir au client une précision optimale, seules les pièces dont la longueur est comprise entre 74,95 mm et 75,05 mm sont jugées commercialisables.
          1. Déterminer $P(X > 74,97)$.
          2.  

            2ND DISTR 2NORMALFRép( $\1$ , $10^{99}$,\2,$\3$)EXE
            Avec une calculatrice de type TI

            $$NormalFR\text{é}p(\1,10^{99},\2,\3) \approx \4$$

            $$P( \5 \geq \1)\approx \4 \text{ à } 10^{-\6} \text{ près.}$$
          3. Déterminer la probabilité qu'une pièce prise au hasard soit commercialisable.
          4. 2ND DISTR 2NORMALFRép( \1 , \2,\3,\4)EXE
            Avec une calculatrice de type TI

            $$NormalFR\text{é}p(\1,\2,\3,\4) \approx \5$$

            $$P(\1 \leq \6 \leq \2)\approx \5 \text{ à } 10^{-\7} \text{ près.}$$

             

            Arrondie au centième près, la probabilité qu'une pièce prise au hasard soit commercialisable est 0,9.

        Partie B


        On souhaite améliorer la précision de la production. Pour cela, les machines sont réglées et reprogrammées.
        Après réglage, la longueur des pièces, en millimètre, est modélisée par une variable aléatoire $Y$ suivant une loi normale.
        Son espérance est inchangée et vaut $\mu=75$.
        La valeur de l'écart-type a été modifiée.
        On note $\sigma'$ la nouvelle valeur de l'écart-type. Ces nouveaux réglages permettent de limiter la proportion de pièces non commercialisables.
        On a $P\left(74,95 \leqslant Y \leqslant 75,05\right)\approx 0,95$
        Déterminer $\sigma'$. Justifier.
        La variable aléatoire $Y$ suit la loi normale d'espérance $\mu=75$ et d'écart-type $\sigma'$ donc $$P(75-1,96\times \sigma'\leq Y\leq 75+1,96\times \sigma')\approx 0,95.$$ On en déduit que : $1,96\times \sigma'\approx 0,05$ soit $\sigma'\approx \dfrac{0,05}{1,96}\approx 0,0255$ Une valeur approchée de la nouvelle valeur de l'écart-type est $\sigma'\approx 0,0255$.

        Partie C


        On procède à de nouveaux réglages. Le responsable de l'atelier affirme alors être en mesure de commercialiser 97 % des pièces. On procède à un contrôle de qualité en prélevant au hasard 300 pièces métalliques. On constate que $14$ d'entre elles ne sont pas commercialisables. Au seuil de 95 %, faut-il mettre en doute l'affirmation du responsable de l'atelier ? Justifier la réponse.
        On rappelle que lorsque la proportion $p$ dans la population est connue, l'intervalle de fluctuation asymptotique à 95 % d'une fréquence obtenue sur un échantillon de taille $n$ est donné par : \[\left[p-1,96\sqrt{\dfrac{p(1-p)}{n}} ; p-1,96\sqrt{\dfrac{p(1-p)}{n}}\right].\]

        La proportion $p$ est égale à  $\1$. La taille  $n$  de l'échantillon considéré est égale à  $\2.$
        Comme  $ n =\2$ ,   $n \times p  $=\3  et $n\times (1-p)=\4,$ les conditions d'utilisation d'un intervalle de fluctuation asymptotique sont réunies.

        En effet on a bien : $$n \geq 30\;;\; n \times p \geq 5 \text{ et } n\times (1-p) \geq 5$$


        L'intervalle de fluctuation asymptotique au seuil de  $95\% $  est : $$I_{\2} = \left[\1 - 1,96\sqrt{\dfrac{\1\times \5}{\2}}~;~\1 + 1,96\sqrt{\dfrac{\1\times \5}{\2}} \right]$$ 

        Soit $I_{300}\approx [0,951;0,99]$.
        La fréquence des pièces commercialisables est $f=\dfrac{286}{300}\approx 0,953$.
        $\dfrac{286}{300}\in [0,951;0,99]$ donc on ne remet pas en cause l'affirmation du responsable de l'atelier.
        Cependant, la fréquence des pièces commercialisables dans l'échantillon étant proche de la borne inférieure de l'intervalle de fluctuation un deuxième contrôle de qualité serait judicieux.
  • Vues: 15624

Rechercher