Processing math: 100%

Rédigé par Luc Giraud le . Publié dans Pour tous.

Tex, pour utiliser le forum

  1. Pour voir comment une formule a été écrite dans une question ou une réponse, y compris celle-ci, cliquez dessus avec le bouton droit de la souris et choisissez "Afficher les maths sous> Les commandes TeX". (Quand vous faites cela, le '$' ne s'affichera pas. Assurez-vous de les ajouter. Voir le point suivant.)

  2. Pour les formules en ligne, incluez la formule dans $...$. o

  3. Pour des formules centrées, utilisez $$...$$.
    Ceux-ci rendent différemment. Par exemple, tapez
    $\sum_{i=0}^n i^2 = \frac{(n^2+n)(2n+1)}{6}$
    pour voir ni=0i2=(n2+n)(2n+1)6 ( qui est une formule en ligne ) ou tapez
    $$\sum_{i=0}^n i^2 = \frac{(n^2+n)(2n+1)}{6}$$
    pour voir ni=0i2=(n2+n)(2n+1)6 ( qui est en mode displaystyle : formule centrée ).

  4. Pour les lettres grecques, utilisez \alpha, \beta, …, \omega: α,β,ω. Pour les majuscules, utilisez \Gamma, \Delta, …, \Omega: Γ,Δ,,Ω.

  5. Pour les exposants et les indices, utilisez ^ et _. Par exemple, x_i^2: x2i, \log_2 x: log2x.

  6. Groupes. Exposants, indices, et autres opérations s'appliquent uniquement au prochain  “groupe”. Un “groupe” est soit un symbole unique, soit une formule entourée d'accolades {}. Si vous tapez 10^10, vous aurez une surprise: 1010. Mais 10^{10} donnera probablement ce que vous voulez: 1010. Utilisez des accolades pour délimiter une formule à laquelle s'applique un indice ou un indice: x^5^6  est une erreur; {x^y}^z donne xyz, et x^{y^z} donne xyz. Observez la différence entre x_i^2 x2i et x_{i^2} xi2.

  7. Parenthses Ordinary symbols ()[] make parentheses and brackets (2+3)[4+4]. Use \{ and \} for curly braces {}.

    These do not scale with the formula in between, so if you write (\frac{\sqrt x}{y^3}) the parentheses will be too small: (xy3). Using \left(\right) will make the sizes adjust automatically to the formula they enclose: \left(\frac{\sqrt x}{y^3}\right) is (xy3).

    \left and\right apply to all the following sorts of parentheses: ( and ) (x), [ and ] [x], \{ and \} {x}, | |x|, \vert |x|, \Vert x, \langle and \rangle x, \lceil and \rceil x, and \lfloor and \rfloor x. \middle can be used to add additional dividers. There are also invisible parentheses, denoted by .: \left.\frac12\right\rbrace is 12}.

    If manual size adjustments are required: \Biggl(\biggl(\Bigl(\bigl((x)\bigr)\Bigr)\biggr)\Biggr) gives (((((x))))).

  8. Sums and integrals \sum and \int; the subscript is the lower limit and the superscript is the upper limit, so for example \sum_1^n n1. Don't forget {} if the limits are more than a single symbol. For example, \sum_{i=0}^\infty i^2 is i=0i2. Similarly, \prod , \int , \bigcup , \bigcap , \iint , \iiint , \idotsint .

  9. Fractions There are three ways to make these. \frac ab applies to the next two groups, and produces ab; for more complicated numerators and denominators use {}: \frac{a+1}{b+1} is a+1b+1. If the numerator and denominator are complicated, you may prefer \over, which splits up the group that it is in: {a+1\over b+1} is a+1b+1. Using \cfrac{a}{b} command is useful for continued fractions ab, more details for which are given in this sub-article.

  10. Fonts

    • Use \mathbb or \Bbb for "blackboard bold": CHNQRZ.
    • Use \mathbf for boldface: ABCDEFGHIJKLMNOPQRSTUVWXYZ abcdefghijklmnopqrstuvwxyz.
    • Use \mathit for italics: ABCDEFGHIJKLMNOPQRSTUVWXYZ abcdefghijklmnopqrstuvwxyz.
    • Use \pmb for boldfaced italics: ABCDEFGHIJKLMNOPQRSTUVWXYZABCDEFGHIJKLMNOPQRSTUVWXYZ abcdefghijklmnopqrstuvwxyzabcdefghijklmnopqrstuvwxyz.
    • Use \mathtt for "typewriter" font: ABCDEFGHIJKLMNOPQRSTUVWXYZ abcdefghijklmnopqrstuvwxyz.
    • Use \mathrm for roman font: ABCDEFGHIJKLMNOPQRSTUVWXYZ abcdefghijklmnopqrstuvwxyz.
    • Use \mathsf for sans-serif font: ABCDEFGHIJKLMNOPQRSTUVWXYZ abcdefghijklmnopqrstuvwxyz.
    • Use \mathcal for "calligraphic" letters: ABCDEFGHIJKLMNOPQRSTUVWXYZ
    • Use \mathscr for script letters: ABCDEFGHIJKLMNOPQRSTUVWXYZ
    • Use \mathfrak for "Fraktur" (old German style) letters: ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz.
  11. Radical signs Use sqrt, which adjusts to the size of its argument: \sqrt{x^3} x3; \sqrt[3]{\frac xy} 3xy. For complicated expressions, consider using {...}^{1/2} instead.

  12. Some special functions such as "lim", "sin", "max", "ln", and so on are normally set in roman font instead of italic font. Use \lim, \sin, etc. to make these: \sin x sinx, not sin x sinx. Use subscripts to attach a notation to \lim: \lim_{x\to 0} limx0

  13. There are a very large number of special symbols and notations, too many to list here; see this shorter listing, or this exhaustive listing. Some of the most common include:

    • \lt \gt \le \leq \leqq \leqslant \ge \geq \geqq \geqslant \neq <>. You can use \not to put a slash through almost anything: \not\lt but it often looks bad.
    • \times \div \pm \mp ×÷±. \cdot is a centered dot: xy
    • \cup \cap \setminus \subset \subseteq \subsetneq \supset \in \notin \emptyset \varnothing
    • {n+1 \choose 2k} or \binom{n+1}{2k} (n+12k)
    • \to \rightarrow \leftarrow \Rightarrow \Leftarrow \mapsto
    • \land \lor \lnot \forall \exists \top \bot \vdash \vDash ¬
    • \star \ast \oplus \circ \bullet
    • \approx \sim \simeq \cong \equiv \prec \lhd \therefore
    • \infty \aleph_0 0 \nabla \partial \Im \Re
    • For modular equivalence, use \pmod like this: a\equiv b\pmod n ab(modn).
    • \ldots is the dots in a1,a2,,an \cdots is the dots in a1+a2++an
    • Some Greek letters have variant forms: \epsilon \varepsilon ϵε, \phi \varphi ϕφ, and others. Script lowercase l is \ell .

    Detexify lets you draw a symbol on a web page and then lists the TEX symbols that seem to resemble it. These are not guaranteed to work in MathJax but are a good place to start. To check that a command is supported, note that MathJax.org maintains a list of currently supported LATEX commands, and one can also check Dr. Carol JVF Burns's page of TEX Commands Available in MathJax.

  14. Spaces MathJax usually decides for itself how to space formulas, using a complex set of rules. Putting extra literal spaces into formulas will not change the amount of space MathJax puts in: a␣b and a␣␣␣␣b are both ab. To add more space, use \, for a thin space ab; \; for a wider space ab. \quad and \qquad are large spaces: ab, ab.

    To set plain text, use \text{…}: {xsx is extra large}. You can nest $…$ inside of \text{…}.

  15. Accents and diacritical marks Use \hat for a single symbol ˆx, \widehat for a larger formula ^xy. If you make it too wide, it will look silly. Similarly, there are \bar ˉx and \overline ¯xyz, and \vec x and \overrightarrow xy and \overleftrightarrow xy. For dots, as in ddxx˙x=˙x2+x¨x, use \dot and \ddot.

  16. Special characters used for MathJax interpreting can be escaped using the \ character: \$ $, \{ {, \_ _, etc. If you want \ itself, you should use \backslash , because \\ is for a new line.

(Tutorial ends here.)