Bac STI2D Métropole 16 juin 2016 - Correction Exercice 1

Page 2 sur 8: Correction Exercice 1

Correction de l'exercice 1 (4 points)


QCM

Cet exercice est un questionnaire à choix multiples. Pour chacune des questions suivantes, une seule des quatre réponses proposées est exacte. Aucune justification n'est demandée. Une bonne réponse rapporte un point. Une mauvaise réponse, plusieurs réponses ou l'absence de réponse à une question ne rapportent ni n'enlèvent de point.
Indiquer sur la copie le numéro de la question et la lettre correspondant à la réponse.
Le plan complexe est rapporté à un repère orthonormé direct $\left(\text{O},~\vec{u},~\vec{v}\right)$ On note $\text{i}$ le nombre complexe vérifiant $\text{i}^2 =-1$

  1. Un argument du nombre complexe $2 + 2\text{i}$ est égal à :
    1. $-\dfrac{\pi}{4}$
    2. $-\dfrac{9\pi}{4}$
    3. $2\sqrt 2$
    4. $\dfrac{\pi}{4}$
  2. $2 + 2\text{i}$
    • Module : \begin{align*} |z| & = \sqrt{ 2^2+2^2}\\ & = \sqrt{8}\\ & =2\sqrt{ 2 } \end{align*}
    • Argument :
      $$\left\lbrace \begin{array}{l} \cos \theta=\dfrac{a}{r}=\dfrac{2}{2\sqrt{ 2 }}= \dfrac{\sqrt 2 }{2} \\ \sin \theta=\dfrac{b}{r}=\dfrac{2}{2\sqrt{ 2 }}= \dfrac{\sqrt 2 }{2}\end{array} \right.$$ Donc $\theta = \dfrac{ \pi}{4}$
    Un argument du nombre complexe $2 + 2\text{i}$ est égal à $\theta = \dfrac{ \pi}{4}$
    • On utilise la calculatrice :( en mode degré) pour les vieilles TI83 ...
      Capturer1 Capturer2
    • Le nombre complexe $\text{e}^{\text{i}\frac{\pi}{5}}\times \text{e}^{\text{i}\frac{2\pi}{15}}$ est égal à :
      1. $\frac{1}{2}+ \frac{\sqrt 3}{2}\text{i}$
      2. $\frac{\sqrt 3}{2}+\frac{1}{2} \text{i}$
      3. $0,5+0,866 \text{i}$
      4. $0,5+0,8660254038 \text{i}$
    • \begin{align*} \text{e}^{\text{i}\frac{\pi}{5}}\times \text{e}^{\text{i}\frac{2\pi}{15}}&=\text{e}^{\text{i}\left (\frac{\pi}{5}+\frac{2\pi}{15}\right )}\\ & =\text{e}^{\text{i}\left (\frac{3\pi}{15}+\frac{2\pi}{15}\right )}\\ &=\text{e}^{\text{i}\frac{\pi}{3}}\\ &=\cos\left (\frac{\pi}{3}\right )+\text{i}\sin\left (\frac{\pi}{3}\right )\\ &=\frac{1}{2}+ \frac{\sqrt 3}{2}\text{i} \end{align*}
    • On considère les points $A$ et $B$ d'affixes respectives $z_A = 2 \text{e}^{\text{i}\frac{\pi}{3}}$ et $z_B = \frac{5}{2} \text{e}^{\text{i}\frac{5\pi}{6}}$. Le triangle $OAB$ est :
      1. isocèle en $O$
      2. rectangle en $O$
      3. rectangle et isocèle en $B$
      4. isocèle en $B$
    • Plusieurs méthodes sont possibles !  On commence par faire une figure :

      \begin{align*} z_A &= 2 \text{e}^{\text{i}\frac{\pi}{3}}\\ &=2\left (\cos\left (\frac{\pi}{3}\right )+\text{i}\sin\left (\frac{\pi}{3}\right )\right )\\ &=2\left (\frac{1}{2}+ \frac{\sqrt 3}{2}\text{i}\right )\\ &=1+\text{i}\sqrt 3\\ \text{Donc }& A(1, \sqrt 3) \end{align*} \begin{align*} z_B& =\frac{5}{2} \text{e}^{\text{i}\frac{5\pi}{6}}\\ &=\frac{5}{2}\left (\cos\left (\frac{5\pi}{6}\right )+\text{i}\sin\left (\frac{5\pi}{6}\right )\right )\\ &=\frac{5}{2}\left (\frac{\sqrt 3}{2}+ \text{i}\frac{1}{2}\right )\\ &=-\dfrac{5\sqrt 3}{4} +\text{i} \dfrac{5}{4}\\ \text{Donc }& B\left (-\dfrac{5\sqrt 3}{4}, \dfrac{5}{4}\right ) \end{align*} On a donc \begin{align*} z_{\vec{0A}} &=z_A-z_O\\ &=z_A\\ &=1+\text{i}\sqrt 3\\ \text{Donc }&\vec{0A} (1, \sqrt 3) \end{align*} \begin{align*} z_{\vec{0B}} &=z_B-z_O\\ &=z_B\\ &=-\dfrac{5\sqrt 3}{4} +\text{i} \dfrac{5}{4}\\ \text{Donc }& \vec{0B}\left (-\dfrac{5\sqrt 3}{4}, \dfrac{5}{4}\right ) \end{align*} Ainsi \begin{align*} \vec{0A}\cdot \vec{0B}& = XX' + YY'\\ &=1\times \left (-\dfrac{5\sqrt 3}{4}\right )+\sqrt 3 \times \dfrac{5}{4}\\ &=-\dfrac{5\sqrt 3}{4}+ \dfrac{5\sqrt 3}{4}\\ &=0 \end{align*} Ayant $\vec{0A}\cdot \vec{0B}=0$ les vecteurs $\vec{0A}$ et $ \vec{0B}$ sont orthogonaux, donc le triangle OAB est rectangle en $O$.
    • Pour tout nombre réel $\theta$, le nombre complexe $\text{e}^{\text{i}\theta} +\dfrac{1}{\text{e}^{\text{i}\theta}} $ est égal à :
      1. $2\cos\left(\theta\right)$
      2. $\cos\left(\theta\right)+\text{i}\sin\left(\theta\right) $
      3. $1$
      4. $2\text{i}\sin\left(\theta\right)$
    • \begin{align*} \text{e}^{\text{i}\theta} +\dfrac{1}{\text{e}^{\text{i}\theta}}&=\text{e}^{\text{i}\theta} +\text{e}^{-\text{i}\theta}& \text{ Prop.}\\ &=2\cos\left(\theta\right)&\text{ Première formule d'Euler}\\ \end{align*}

 

Exercice 2
Page
  • Vues: 11238

Rechercher