Baccalauréat S Nouvelle-Calédonie 19 novembre 2016 - Spécialité

Page 11 sur 12: Spécialité

Spécialité 5 points


Candidats AYANT SUIVI l'enseignement de spécialité mathématiques


On observe la taille d'une colonie de fourmis tous les jours. Pour tout entier naturel $n$ non nul, on note $u_n$ le nombre de fourmis, exprimé en milliers. dans cette population au bout du $n$-ième jour. Au début de l'étude la colonie compte  5000  fourmis et au bout d'un jour elle compte  5100  fourmis. Ainsi, on a $u_0 = 5$ et $u_1 = 5,1$. On suppose que l'accroissement de la taille de la colonie d'un jour sur l'autre diminue de 10 % chaque jour. En d'autres termes. pour tout entier naturel $n$, \[u_{n+2} - u_{n+1} = 0,9\left(u_{n+1} - u_n\right).\]

  1. Démontrer, dans ces conditions, que $u_2 = 5,19$.
  2. Pour tout entier naturel $n$, on pose $V_n = \begin{pmatrix}u_{n+1}\\u_n\end{pmatrix}$ et $A = \begin{pmatrix}1,9& -0,9\\1& 0\end{pmatrix}$.
    1. Démontrer que, pour tout entier naturel $n$, on a $V_{n+1} = AV_n$. On admet alors que, pour tout entier naturel $n,\: V_n = A^nV_0$.
    2. On pose $P = \begin{pmatrix}0,9&1\\1&1\end{pmatrix}$. On admet que la matrice $P$ est inversible. À l'aide de la calculatrice, déterminer la matrice $P^{-1}$. En détaillant les calculs, déterminer la matrice $D$ définie par $D = P^{-1} AP$.
    3. Démontrer par récurrence que, pour tout entier naturel $n$, on a $A^n = PD^nP^{-1}$. Pour tout entier naturel $n$, on admet que \[A^n = \begin{pmatrix}-10 \times 0,9^{n+1} + 10& 10 \times 0,9^{n+1} - 9\\ - 10 \times 0,9^n + 10& 10 \times 0,9^n - 9\end{pmatrix}.\]
    4. En déduire que, pour tout entier naturel $n$ : $u_n = 6 - 0,9^n$.
  3. Calculer la taille de la colonie au bout du 10e jour. On arrondira le résultat à une fourmi près.
  4. Calculer la limite de la suite $\left(u_n\right)$. Interpréter ce résultat dans le contexte.

 

Correction Spécialité
Page
  • Vues: 32778

Rechercher