Baccalauréat STI 2D/STL spécialité SPCL Nouvelle-Calédonie 27 novembre 2018 - Exercice 2
Exercice 2 5 points
Les trois parties de cet exercice peuvent être traitées de façon indépendante. Dans cet exercice, les résultats seront arrondis au millième.
La société Héliocel fabrique des cellules photovoltaïques destinées à être assemblées pour former des panneaux solaires qui seront ensuite installés sur le toit d'habitations pour produire de l'électricité.
Partie A
On estime que 5 % des cellules fabriquées par Héliocel présentent un défaut et sont donc inutilisables.
On prélève au hasard un lot de $80$ cellules dans la production pour vérification. Le nombre de cellules produites est suffisamment important pour que l'on assimile ce prélèvement à un tirage avec remise de $80$ cellules. On appelle $X$ la variable aléatoire qui, à chaque lot de $80$ cellules, associe le nombre de cellules inutilisables.
- La variable aléatoire $X$ suit une loi binomiale. Préciser ses paramètres.
- Quelle est la probabilité qu'un lot ne contienne aucune cellule inutilisable ?
- Un panneau solaire est constitué de $75$ cellules. Quelle est la probabilité d'avoir assez de cellules sans défaut dans un seul lot pour pouvoir fabriquer un panneau ?
Partie B
Après amélioration sur sa chaîne de fabrication, la société annonce une proportion de 3 % de cellules inutilisables. Afin de vérifier cette annonce, le responsable qualité prélève de manière aléatoire un échantillon de $180$ cellules et observe que $9$ cellules sont inutilisables. Cette observation remet-elle en cause l'annonce de la société ?
Partie C
Une famille décide d'installer 15 de ces panneaux solaires sur le toit de sa maison pour produire de l'électricité. La production électrique dépend de l'ensoleillement. On appelle $Y$ la variable aléatoire qui, à chaque journée, associe la production électrique (en kWh) fournie par ces 15 panneaux. On admet que la variable aléatoire $Y$ suit la loi normale d'espérance $\mu = 9$ et d'écart-type $\sigma = 3$.
- Quelle est la probabilité que la production journalière de l'installation de cette famille soit comprise entre $6$ kWh et $12$ kWh ?
- Parmi les trois fonctions de densité de probabilité représentées ci-dessous, laquelle peut être celle de la loi de $Y$ ? Justifier.
- La consommation moyenne de cette famille est $13$ kWh/jour. Quelle est la probabilité que la production journalière de son installation soit supérieure à sa consommation moyenne quotidienne ?
- Vues: 12668