Baccalauréat S Antilles Guyane 18 juin 2019 - Exercice 4

Page 7 sur 10: Exercice 4

Exercice 4 5 points


Candidats N'AYANT PAS SUIVI l'enseignement de spécialité mathématiques


Les trois parties de cet exercice sont indépendantes.

Partie A


Lors d'une soirée, une chaîne de télévision a retransmis un match. Cette chaîne a ensuite proposé une émission d'analyse de ce match. On dispose des informations suivantes:

  • 56 % des téléspectateurs ont regardé le match;
  • un quart des téléspectateurs ayant regardé le match ont aussi regardé l'émission;
  • 16,2 % des téléspectateurs ont regardé l'émission.

On interroge au hasard un téléspectateur. On note les évènements:

  • $M$ :«le téléspectateur a regardé le match» ;
  • $E$ :«le téléspectateur a regardé l'émission ».


On note $x$ la probabilité qu'un téléspectateur ait regardé l'émission sachant qu'il n'a pas regardé le match.

  1. Construire un arbre pondéré illustrant la situation.
  2. Déterminer la probabilité de $M \cap E$.
    1. Vérifier que $p(E) = 0,44x + 0,14$.
    2. En déduire la valeur de $x$.
  3. Le téléspectateur interrogé n'a pas regardé l'émission. Quelle est la probabilité, arrondie à $10^{-2}$, qu'il ait regardé le match?

 

Partie B


Pour déterminer l'audience des chaînes de télévision, un institut de sondage recueille, au moyen de boîtiers individuels, des informations auprès de milliers de foyers français. Cet institut décide de modéliser le temps passé, en heure, par un téléspectateur devant la télévision le soir du match, par une variable aléatoire $T$ suivant la loi normale d'espérance $\mu = 1,5$ et d'écart-type $\sigma = 0,5$.

  1. Quelle est la probabilité, arrondie à $10^{-3}$, qu'un téléspectateur ait passé entre une heure et deux heures devant sa télévision le soir du match ?
  2. Déterminer l'arrondi à $10^{-2}$ du réel $t$ tel que $P(T \geqslant t) = 0,066$. Interpréter le résultat.

 

Partie C


La durée de vie d'un boîtier individuel, exprimée en année, est modélisée par une variable aléatoire notée $S$ qui suit une loi exponentielle de paramètre $\lambda$ strictement positif. On rappelle que la densité de probabilité de $S$ est la fonction $f$ définie sur $[0~;~ +\infty[$ par \[f(x) = \lambda\text{e}^{-\lambda x}.\] L'institut de sondage a constaté qu'un quart des boîtiers a une durée de vie comprise entre un et deux ans. L'usine qui fabrique les boîtiers affirme que leur durée de vie moyenne est supérieure à trois ans. L'affirmation de l'usine est-elle correcte ? La réponse devra être justifiée.

Correction Exercice 4
Page
  • Vues: 60292