Baccalauréat STI2D NOUVELLE CALÉDONIE Mars 2014 2013 - Correction Exercice 3
Page 6 sur 8
Correction de l'exercice 3 (5 points)
L'iode 131 est un produit radioactif utilisé en médecine. Il peut cependant être dangereux lorsqu'on le reçoit en grande quantité. On considère un échantillon d'une population de noyaux d'iode 131 comportant $10^6$ noyaux au début de l'observation. On considère que le nombre de noyaux diminue chaque jour de 8,3 $ \, \%$. On note $u_{n}$ le nombre de noyaux de cet échantillon au bout de $n$ jours. On a donc $u_{0} = 10^6$.
- Calculer $u_{1}$ puis $u_{2}$. À un taux d'évolution de $- 8.3 \,\%$, correspond un coefficient multiplicateur de $1- 0.083 $ soit $ 0.917 $.
- Exprimer $u_{n+1}$ en fonction de $u_{n}$. En déduire la nature de la suite $\left(u_{n}\right)$. $u_{n+1}= 0.917 u_{n}$. Passant d'un terme au suivant en le multipliant par un même nombre, la suite $\left(u_{n}\right)$ est une suite géométrique de premier terme $10^6$ et de raison $0.917$ .
- Exprimer $u_{n}$ en fonction de $n$. Le terme général d'une suite géométrique de premier terme $u_0$ et de raison $q$ est $u_n=u_0q^n$.
- Déterminer à partir de combien de jours la population de noyaux aura diminué au moins de moitié. Cette durée s'appelle la demi-vie de l'iode 131. Pour cela, résolvons $u_n \leqslant \dfrac{10^6}{2}$ $$\begin{array}{ll} u_n \leqslant \dfrac{10^6}{2}& \iff 0.917 ^n \times 10^6 \leqslant \dfrac{10^6}{2}\\ &\iff 0.917 ^n \leqslant \dfrac{1}{2} \\ & \ln \left(0.917 ^n\right) \leqslant \ln\left(\dfrac{1}{2}\right)\\ &\iff n \ln 0.917 \leqslant -\ln 2 \qquad\text{car } \ln \dfrac{1}{b}=-\ln b \\ &\iff n \geqslant \dfrac{-\ln 2}{\ln 0.917 } \qquad \text{car }\ln (0.917) < 0\\ \end{array}$$ $$\dfrac{-\ln 2}{\ln (0.917)} \approx 7.99959$$ Au bout de huit jours, la population de noyaux aura diminué au moins de moitié. Cette durée s'appelle la demi-vie de l'iode 131.
- On considère l'algorithme suivant: $$\begin{array}{|c|c|c|}\hline 1 &\text{Variables :}& n \text{ et } u \text{ sont des nombres }\\ 2 &\text{Initialisation :}& \text{ Affecter la valeur } 0 \text{ à } n\\ 3 & & \text{Affecter la valeur } 10^6 \text{ à } u\\ 4 &\text{Traitement :}& \text{ Tant que }u > \dfrac{10^6}{2} \\ 5 & &\hspace{5mm}n \text{ prend la valeur } n + 1\\ 6 & &\hspace{5mm}u \text{ prend la valeur } u \times 0,917\\ 7 & &\text{ Fin tant que }\\ 8 &\text{Sortie :} &\text{ Afficher } n\\ \hline \end{array}$$
- À quoi correspond la valeur $n$ en sortie de cet algorithme ? La valeur $n$ en sortie de cet algorithme correspond à la demi-vie. $u$ correspond au nombre de noyaux et $n$ au nombre de boucles qu'il faut effectuer pour avoir la moitié du nombre de noyaux.
- Si on programme cet algorithme, quel résultat affiche-t-il ? Si on programme cet algorithme, il affiche 8, la réponse trouvée à la question 4.
- Pour le Césium 137, le nombre de noyaux diminue chaque année de 2,3 $\,\%$. Quelles modifications faut-il apporter à l'algorithme précédent pour trouver la demi-vie du césium 137 sachant que la population au départ est de $10^8$noyaux ? Pour le Césium 137, le nombre de noyaux diminue chaque année de 2,3$\,\%$.
Dans la ligne « affecter à $u$ la valeur $10^6$» nous allons remplacer $10^6$ par $10^8$ et dans le traitement de $u$ nous allons remplacer 0.917 par 0.977 , coefficient multiplicateur associé à une baisse de $ 2.3 \,\%$.
$u_1=10^6\times 0.917 \quad u_2=\left( 0.917 \times 10^6\right) \times 0.917 \approx 0.841 \times 10^6$
Par conséquent $u_n=10^6\times( 0.917 )^n$.
Exercice 4
- Vues: 12109