Baccalauréat STI2D NOUVELLE CALÉDONIE 2013 - Exercice 4

Page 7 sur 8: Exercice 4

Exercice 4 5 points


Probabilités

Une entreprise fabrique en grande quantité des médailles circulaires en argent. Un contrôle de qualité consiste à vérifier que le diamètre et l'épaisseur (exprimés en millimètres) sont conformes afin de les ranger dans un étui spécifique. Dans cet exercice, les valeurs approchées seront arrondies à $10^{-3}$ près.


Partie A

On suppose dans cette partie que la probabilité pour qu'une pièce prélevée au hasard soit conforme est égale à 0,9. Soit $X$ la variable aléatoire, qui à tout échantillon de 10 pièces associe le nombre de pièces conformes.


  1. Justifier que la variable aléatoire $X$ suit une loi binomiale dont on déterminera les paramètres.
  2. Calculer l'espérance mathématique $E(X)$ et l'écart type $\sigma(X)$ de la variable aléatoire $X$.
  3. Calculer la probabilité que dans un échantillon de 10 pièces, au moins 8 pièces soient conformes.

Partie B

Les pièces sont fabriquées par une machine automatique. Soit $M$ la variable aléatoire qui à chaque pièce prélevée au hasard associe son diamètre. On suppose que $M$ suit la loi normale d'espérance 80 et d'écart type 0,6.


  1. Déterminer la probabilité $P\left(79 \leqslant M \leqslant 81\right)$.
  2. Quelle est la probabilité que le diamètre d'une pièce prélevée au hasard soit supérieur à 80 ?

Partie C

On s'intéresse dans cette partie à l'épaisseur des médailles. On fait l'hypothèse que le réglage de la machine est tel que 5$\,\% $des médailles fabriquées ont une épaisseur non conforme.


  1. Déterminer l'intervalle de fluctuation asymptotique à 95$\,\% $de la fréquence des médailles non conformes obtenues dans un échantillon de 300 médailles.
  2. On prélève un échantillon de 300 médailles. On constate que dans cet échantillon, 24 médailles ont une épaisseur non conforme. Doit-on réviser le réglage de la machine ?
Correction Exercice 4
Page
  • Vues: 11300

Rechercher