Baccalauréat S Antilles Guyane 18 juin 2019
Exercice 1 6 points
Partie A
Soit $a$ et $b$ des nombres réels. On considère une fonction $f$ définie sur $[0~;~+\infty[$ par \[f(x) = \dfrac{a}{1 + \text{e}^{-bx}}.\] La courbe $\mathcal{C}_f$ représentant la fonction $f$ dans un repère orthogonal est donnée ci-dessous. La courbe $\mathcal{C}_f$ passe par le point A(O ; 0,5). La tangente à la courbe $\mathcal{C}_f$ au point A passe par le point B(10; 1).
- Justifier que $a = 1$. On obtient alors, pour tout réel $x \geqslant 0$, \[f(x) = \dfrac{1}{1 + \text{e}^{-bx}}.\]
- On admet que la fonction $f$ est dérivable sur $[0~;~+\infty[$ et on note $f'$ sa fonction dérivée. Vérifier que, pour tout réel $x \geqslant 0$ \[f'(x) = \dfrac{b\text{e}^{-bx}}{\left(1 + \text{e}^{-bx}\right)^2}.\]
- En utilisant les données de l'énoncé, déterminer $b$.
Partie B
La proportion d'individus qui possèdent un certain type d'équipement dans une population est modélisée par la fonction $p$ définie sur $[0~;~+\infty[$ par \[p(x) = \dfrac{1}{1 + \text{e}^{-0,2x}}.\] Le réel $x$ représente le temps écoulé, en année, depuis le 1erjanvier 2000. Le nombre $p(x)$ modélise la proportion d'individus équipés après $x$ années. Ainsi, pour ce modèle, $p(0)$ est la proportion d'individus équipés au 1er janvier 2000 et $p(3,5)$ est la proportion d'individus équipés au milieu de l'année 2003.
- Quelle est, pour ce modèle, la proportion d'individus équipés au 1er janvier 2010? On en donnera une valeur arrondie au centième.
-
- Déterminer le sens de variation de la fonction $p$ sur $[0~;~+\infty[$.
- Calculer la limite de la fonction $p$ en $+\infty$.
- Interpréter cette limite dans le contexte de l'exercice.
- On considère que, lorsque la proportion d'individus équipés dépasse 95 %, le marché est saturé. Déterminer, en expliquant la démarche, l'année au cours de laquelle cela se produit.
- On définit la proportion moyenne d'individus équipés entre 2008 et 2010 par \[m = \dfrac{1}{2}\displaystyle\int_8^{10} p(x)\:\text{d}x.\]
- Vérifier que, pour tout réel $x \geqslant 0$, \[p(x) = \dfrac{\text{e}^{0,2x}}{1 + \text{e}^{0,2x}}.\]
- En déduire une primitive de la fonction $p$ sur $[0~;~+\infty[$.
- Déterminer la valeur exacte de $m$ et son arrondi au centième.
- Vues: 60289