BAC STI2D NOUVELLE CALÉDONIE MARS 2014 - Correction de l'Exercice 4
Exercice 4 7 points
Dans tout l'exercice, on désigne par R l'ensemble des nombres réels.
On donne ci-dessous une petite partie de la courbe représentative C d'une fonction f définie et dérivable sur R, dans un repère orthonormé du plan.
On note f′ la fonction dérivée de f.
La courbe C passe par le point A(0;5) et par le point B d'abscisse 2.
La tangente TA à la courbe au point A passe par le point C(1;1) et la tangente TB au point B est horizontale.
Partie A
Dans ce questionnaire à choix multiples, aucune justification n'est demandée. Pour chacune des questions, une seule des réponses proposées est correcte.
Une bonne réponse rapporte 0,5 point. Une mauvaise réponse ou l'absence de réponses n'enlève ni ne rapporte aucun point.
On notera sur la copie le numéro de la question et la réponse choisie.
-
La courbe C passe par le point A(0;5) donc f(0)=5
- FAUX
- FAUX
- FAUX
- VRAI : f(0)=5
-
Le nombre dérivé f′(0) est égal au coefficient directeur de la tangente TA à la courbe au point A(0;5) or cette tangente passe également par le point C(1;1) d'où f′(0)=yC−yAxC−xA . Soit f′(0)=1−51−0=−4
- VRAI : −4
- FAUX
- FAUX
- FAUX
-
La tangente TB à la courbe au point B d'abscisse 2 est parallèle à l'axe des abscisses donc f′(2)=0;
- VRAI : 0
- FAUX
- FAUX
- FAUX
-
L'intégrale ∫20f(x)dx est égale à l'aire, exprimée en unités d'aire, du domaine limité par la courbe C l'axe des abscisses et les droites d'équations x=0 et x=2. Or cette aire est visiblement supérieure à 5 unités d'aire.5⩽∫20f(x)dx⩽7
- FAUX
- VRAI :5⩽∫20f(x)dx⩽7
- FAUX
- FAUX
Partie B
La fonction f représentée dans la PARTIE A est définie sur R par f(x)=(−x2−2x+2)e−x+3.
- On admet que la limite de la fonction f en +∞ est 3. Déterminer la limite de f en −∞.
- On désigne par f′ la fonction dérivée de la fonction f et on admet que pour tout nombre réel x appartenant à R, f′(x)=(x2−4)e−x.
- Étudier le signe de f′(x) suivant les valeurs de x.
- La fonction exponentielle étant strictement positive sur R, on déduit que pour tout réel x;e−x>0, et ainsi f′(x) a le signe de x2−4
- x2−4 est un trinôme du second degré qui a pour racines −2 et 2; il a donc le signe de a=1 à l'extérieur des racines et celui de −a à l'intérieur.
- En déduire le tableau de variation de la fonction f.
- On considère la fonction F définie sur R par F(x)=(x2+4x+2)e−x+3x. Vérifier que la fonction F est une primitive de la fonction f sur R.
- On considère le domaine D du plan limité par la courbe C l'axe des abscisses et les droites d'équations x=0 et x=2.
- Calculer la valeur exacte de l'aire A, exprimée en unités d'aire, du domaine D. Sur l'intervalle [0;2] la fonction f est strictement décroissante et f(2)=3−6e−2≈2,19 donc f est positive sur l'intervalle [0;2]. Par conséquent, l'aire A, exprimée en unités d'aire, du domaine D est égale à l'intégrale de la fonction f sur l'intervalle [0;2] : A=∫20f(x)dx=[F(x)]20=[(x2+4x+2)e−x+3x]20=14e−2+6−2=14e−2+4
- Donner une valeur approchée de A au centième.
L'aire du domaine D est égale à 14e−2+4 unités d'aire.
A≈5,89 unités d'aire à 10−2 près.
limx→−∞ (−x2−2x+2)=limx→−∞ −x2=−∞limx→−∞ e−x=+∞} par produit on obtient: limx→−∞f(x)=−∞
La fonction F est une primitive de la fonction f sur R ssi pour tout réel x on a F′(x)=f(x).
Ici F(x)=(x2+4x+2)e−x+3x est du type F=u+v, ainsi F′=u′+v′.
où u(x)=(x2+4x+2)e−x , donc u=ab d'où u′=a′b+b′a.
a(x)=(x2+4x+2) et b(x)=e−x
Alors a′(x)=(2x+4) et b′(x)=−e−x
Puis u′(x)=(2x+4)e−x+(−e−x)(x2+4x+2)=e−x(2x+4−x2−4x−2)=e−x(−x2−2x+2)
et v′(x)=3, et donc F′(x)=u′(x)+v′(x)=e−x(−x2−2x+2)+3=f(x)
- Vues: 13340