Baccalauréat STI2D Métropole - La Réunion - 19 juin 2018 - Exercice 2

Page 3 sur 8: Exercice 2

Exercice 2 5 points


Suites

Après son installation, un lundi matin, un aquarium contient 280 litres d’eau et des poissons. Par évaporation, le volume d’eau dans l’aquarium diminue de 2% par semaine. Compte tenu du nombre de poissons, cet aquarium doit contenir en permanence au minimum 240 litres d’eau.

Partie A

  1. Quel volume d'eau restera-t-il dans l'aquarium au bout d’une semaine?
  2. Est-il vrai qu’au bout de deux semaines, exactement 4% du volume d’eau initial se seront évaporés? Justifier.
  3. Déterminer au bout de combien de semaines le volume d’eau dans l’aquarium deviendra insuffisant.

Partie B

On ajoute chaque lundi matin, en une seule fois, 5 litres d’eau pour compenser l’évaporation hebdomadaire de 2%.
On note $u_0$ le volume initial d’eau en litres dans l'aquarium. Ainsi $u_0 = 280$.
Pour tout entier naturel $n$ supérieur ou égal à 1, on note $u_n$ le volume d’eau dans l'aquarium, en litres, $n$ semaines après son installation, immédiatement après l’ajout hebdomadaire des 5 litres d’eau.

  1. Vérifier que $u_2 = 278,812$.
  2. Justifier que pour tout entier naturel $n, u_{n+1} = 0,98 u_n + 5$.
  3. Montrer que la suite $\left(u_n\right)$ n’est pas géométrique.
  4. On considère l'algorithme ci-dessous dans lequel $k$ désigne un nombre entier naturel et $U$ un nombre réel.
    $$\begin{array}{| l |} \hline\\ U\gets 280 \\ \text{Pour } k \text{ allant de 1 à } \ldots\\ \hspace{0.5cm} U\gets \ldots \\ \text{Fin pour }\\ \hline \end{array}$$
    1. Recopier et compléter l’algorithme pour qu’à la fin de son exécution, la variable U contienne $u_6$.
    2. Quel est le volume d’eau dans l’aquarium, en litres à 10$^{-2}$ près, 6 semaines après son installation immédiatement après l’ajout hebdomadaire des 5 litres d’eau.
  5. On considère la suite $\left(u_n\right)$ définie pour tout entier naturel $n$ par $v_n = u_n -250$. On admet que la suite $\left(u_n\right)$ est une suite géométrique de raison 0,98.
    1. Calculer $v_0$.
    2. Exprimer $v_n$ en fonction de $n$.
    3. En déduire que, pour tout entier naturel $n, u_n = 30 \times 0,98^n + 250$.
    4. Justifier que la préconisation concernant le volume d’eau dans l'aquarium est respectée.
Correction Exercice 2
Page
  • Vues: 14178

Rechercher