Baccalauréat S Métropole- La Réunion 12 septembre 2016 - Correction Exercice 2

Page 4 sur 10: Correction Exercice 2

Correction de l'exercice 2 (3 points)


Commun à tous les candidats

On considère les nombres complexes $z_n$ définis pour tout entier $n \geqslant 0$ par la donnée de $z_0$, où $z_0$ est différent de 0 et de 1, et la relation de récurrence: \[z_{n+1} = 1- \dfrac{1}{z_n}.\]

    1. Dans cette question, on suppose que $z_0 = 2$. Déterminer les nombres $z_1$, $z_2$, $z_3$, $z_4$, $z_5$ et $z_6$
    2. Si $z_0=2$ alors $z_1 = 1-\dfrac{1}{2} = \dfrac{1}{2}$
      $z_2=1-\dfrac{1}{\dfrac{1}{2}}=-1$
      $z_3=1-\dfrac{1}{-1}=2$
      $z_4=\dfrac{1}{2}$
      $z_5=-1$
      $z_6=2$
      $\quad$
    3. Dans cette question, on suppose que $z_0 = \text{i}$. Déterminer la forme algébrique des nombres complexes $z_1$, $z_2$, $z_3$, $z_4$, $z_5$ et $z_6$.
    4. Si $z_0=\text{i}$ alors $z_1=1-\dfrac{1}{\text{i}}=1+\text{i}$
      $z_2=1-\dfrac{1}{1+\text{i}} = \dfrac{1}{2}+\dfrac{\text{i}}{2}$
      $z_3=1-\dfrac{1}{\dfrac{1}{2}+\dfrac{\text{i}}{2}}=\text{i}$
      $z_4=1+\text{i}$
      $z_5=\dfrac{1}{2}+\dfrac{\text{i}}{2}$
      $z_6=\text{i}$
      $\quad$
    5. Dans cette question on revient au cas général où $z_0$ est un complexe donné. Que peut-on conjecturer pour les valeurs prises par $z_{3n}$ selon les valeurs de l'entier naturel $n$ ? Prouver cette conjecture.
    6. On peut conjecturer que, pour tout entier naturel $n$, on a $z_{3n}=z_0$
      Initialisation : Si $n=0$ alors $z_{3n}=z_{3\times 0}=z_0$.
      La propriété est vraie au rang $n$.
      $\quad$
      Hérédité : Supposons la propriété vraie au rang $n$ : $z_{3n}=z_0$.
      $z_{3n+1}=1-\dfrac{1}{z_0}=\dfrac{z_0-1}{z_0}$
      $z_{3n+2}=1-\dfrac{1}{\dfrac{z_0-1}{z_0}} = 1-\dfrac{z_0}{z_0-1}=\dfrac{-1}{z_0-1}$
      $z_{3n+3}=1-\dfrac{1}{\dfrac{-1}{z_0-1}} = 1+z_0-1=z_0$
      Par conséquent $z_{3(n+1)}=z_0$.
      La propriété est vraie au rang $n+1$
      $\quad$
      Conclusion : La propriété est vraie au rang $0$ et est héréditaire.
      Par conséquent, pour tout entier naturel $n$, on a $z_{3n}=z_0$.
      $\quad$
  1. Déterminer $z_{ 2016 }$ dans le cas où $z_0 = 1 + \text{i}$.
  2. $2016=3\times 672$ donc $z_{2016}=z_0=1+\text{i}$.
    $\quad$
  3. Existe-t-il des valeurs de $z_0$ tel que $z_0 = z_1$ ? Que peut-on dire de la suite $\left(z_n\right)$ dans ce cas ?
  4. On cherche la valeur de $z_0$ telle que :
    $\begin{align*} z_0=1-\dfrac{1}{z_0} &\iff \dfrac{z_0^2-z_0+1}{z_0} = 0\\ &\iff z_0^2-z_0+1=0 \text{ et } z_0\neq  0
    \end{align*}$
    $\Delta = -3 <0$
    Il y a donc deux solutions complexes : $\dfrac{1-\text{i}\sqrt{3}}{2}$ et $\dfrac{1+\text{i}\sqrt{3}}{2}$.
    Par conséquent si $z_0 \in \left\{\dfrac{1-\text{i}\sqrt{3}}{2};\dfrac{1+\text{i}\sqrt{3}}{2}\right\}$ alors $z_0=z_1$.
    La suite $\left(z_n\right)$ est alors stationnaire.
Exercice 3
Page
  • Vues: 18373

Rechercher