Baccalauréat S Métropole- La Réunion 12 septembre 2016 - Correction Exercice 3

Page 6 sur 10: Correction Exercice 3

Correction de l'exercice 3 (5 points)


Probabilités et suites

Candidats N'AYANT PAS SUIVI l'enseignement de spécialité mathématiques


On dispose d'un dé équilibré à 6 faces numérotées de 1 à 6 et de 2 pièces A et B ayant chacune un côté pile et un côté face. Un jeu consiste à lancer une ou plusieurs fois le dé. Après chaque lancer de dé, si l'on obtient 1 ou 2, alors on retourne la pièce A, si l'on obtient 3 ou 4, alors on retourne la pièce B et si l'on obtient 5 ou 6, alors on ne retourne aucune des deux pièces. Au début du jeu, les 2 pièces sont du côté face.

  1. Dans l'algorithme ci-dessous, 0 code le côté face d'une pièce et 1 code le côté pile. Si $a$ code le côté de la pièce A à un instant donné, alors $1 - a$ code le côté de la pièce A après l'avoir retournée. $$\begin{array}{|ll|}\hline \text{Variables :} & a, b, d, s \text{sont des entiers}\\ & i, n \text{sont des entiers supérieurs ou égaux à } 1\\ \text{Initialisation :}& a \text{ prend la valeur } 0\\ & b \text{ prend la valeur } 0\\ &\text{Saisir } n\\ \text{Traitement :} & \text{Pour } i \text{ allant de 1 à } n \text{ faire }\\ &\begin{array}{|l} d \text{ prend la valeur d'un entier aléatoire compris } \\ \text{entre 1 et 6 }\\ \text{Si } d \leqslant 2\\ \hspace{0.5cm} \begin{array}{|l} \text{alors } a \text{ prend la valeur } 1 - a\\ \text{sinon Si } d \leqslant 4\\ \hspace{1.5cm}| \text{alors } b \text{ prend la valeur } 1 - b\\ \hspace{1cm}\text{FinSi }\\ \end{array}\\ \text{FinSi}\\ s \text{ prend la valeur } a + b\\ \end{array}\\ &\text{ FinPour }\\ \text{Sortie :}&\text{ Afficher } s\\ \hline \end{array}$$
    1. On exécute cet algorithme en saisissant $n = 3$ et en supposant que les valeurs aléatoires générées successivement pour $d$ sont 1 ; 6 et 4. Recopier et compléter le tableau donné ci-dessous contenant l'état des variables au cours de l'exécution de l'algorithme : $$\begin{array}{|l|c|c|c|c|c|} \hline \text{variables}&i&d&a&b&s\\ \hline \text{initialisation}&\text{X}&\text{X}& & &\text{X}\\ \hline 1^{ er}\text{ passage boucle Pour}&& & & & \\ \hline 2^{ e}\text{ passage boucle Pour}& & & & & \\ \hline 3^{ e}\text{ passage boucle Pour}& && & & \\ \hline \end{array}$$
    2. $$\begin{array}{|l|c|c|c|c|c|} \hline \text{variables}&i&d&a&b&s\\ \hline \text{initialisation}&\text{X}&\text{X}&0&0&\text{X}\\ \hline 1^{ er}\text{ passage boucle Pour}&1&1&1&0&1\\ \hline 2^{ e}\text{ passage boucle Pour}&2&6&1&1&2\\ \hline 3^{ e}\text{ passage boucle Pour}&3&4&1&0&1\\ \hline \end{array}$$
    3. Cet algorithme permet-il de décider si à la fin les deux pièces sont du côté pile ?
    4. A chaque étape la variable $s$ détermine le nombre de pièces se trouvant du côté pile.
      Cet algorithme permet donc bien de décider si à la fin les deux pièces sont du côté pile.
  2. Pour tout entier naturel $n$, on note :
    $\bullet~~$ $X_n$ l'évènement : « À l'issue de $n$ lancers de dés, les deux pièces sont du côté face»
    $\bullet~~$ $Y_n$ l'évènement : « À l'issue de $n$ lancers de dés, une pièce est du côté pile et l'autre est du côté face»
    $\bullet~~$ $Z_n$ l'évènement : « À l'issue de $n$ lancers de dés, les deux pièces sont du côté pile».
    De plus on note, $x_n = P\left(X_n\right)$ ; $y_n = P\left(Y_n\right)$ et $z_n = P\left(Z_n\right)$ les probabilités respectives des évènements $X_n$, $Y_n$ et $Z_n$.
    1. Donner les probabilités $x_0$ , $y_0$ et $z_0$ respectives qu'au début du jeu il y ait 0, 1 ou 2 pièces du côté pile.
    2. $P\left(X_0\right)=1$, $P\left(Y_0\right)=0$ et $P\left(Z_0\right)=0$
      $\quad$
    3. Justifier que $P_{X_n}\left(X_{n+1}\right) = \dfrac{1}{3}$.
    4. On appelle $D$ la variable indiquant la face du dé obtenue.
      $P_{X_n}\left(X_{n+1}\right)=P\left(D\in\left\{5;6\right\}\right) = \dfrac{2}{6}=\dfrac{1}{3}$.
    5. Recopier l'arbre ci-dessous et compléter les probabilités sur ses branches, certaines pouvant être nulles :
    6. Si les pièces sont du côté face alors au bout de $n$ lancers alors, au lancer $n+1$, soit les pièces sont du côté face, soit une est du côté pile et l’autre du côté face.
      Par conséquent $P\left(X_n\cap Y_{n+1}\right)=1-\dfrac{1}{3} = \dfrac{2}{3}$.
      $\quad$
      Si, au lancer $n$, une pièce est du côté pile et l’autre est du côté face, alors la seule possibilité de conserver un tel état, au lancer $n+1$, est d’obtenir $5$ ou $6$ avec le dé.
      Donc $P\left(Y_n\cap Y_{n+1}\right)=\dfrac{1}{3}$.
      De même $P\left(Y_n\cap X_{n+1}\right) =\dfrac{1}{3}$ et $P\left(Y_n\cap Z_{n+1}\right)=\dfrac{1}{3}$
      $\quad$
      Si, au lancer $n$, les deux pièces sont du côté pile alors, au lancer $n+1$, on ne peut avoir que deux possibilités : les deux pièces sont toujours du côté pile ou alors l’une est du côté pile et l’autre du côté face.
      Pour garder les pièces du côté pile il faut obtenir $5$ ou $6$ avec le dé.
      Donc $P\left(Z_n\cap Z_{n+1}\right)=\dfrac{1}{3}$ et $P\left(Z_n\cap Y_{n+1}\right)=\dfrac{2}{3}$
      $\quad$
    7. Pour tout entier naturel $n$, exprimer $z_n$ en fonction de $x_n$ et $y_n$.
    8. Pour tout entier naturel $n$, on a $x_n+y_n+z_n=1$ donc $z_n=1-x_n-y_n$.
      $\quad$
    9. En déduire que, pour tout entier naturel $n$, $y_{n+1} = - \dfrac{1}{3}y_n + \dfrac{2}{3}$.
    10. D’après la formule des probabilité totale on a :
      $\begin{align*} y_{n+1}&=P\left(Y_{n+1}\right) \\ &=P\left(X_n\cap Y_{n+1}\right)+P\left(Y_n\cap Y_{n+1}\right)+P\left(Z_n\cap Y_{n+1}\right) \\ &=\dfrac{2}{3}x_n+\dfrac{1}{3}y_n+\dfrac{2}{3}z_n \\ &=\dfrac{2}{3}x_n+\dfrac{1}{3}y_n+\dfrac{2}{3}\left(1-x_n-y_n\right) \\ &=-\dfrac{1}{3}y_n+\dfrac{2}{3}
      \end{align*}$
    11. On pose, pour tout entier naturel $n$, $b_n = y_n - \dfrac{1}{2}$. Montrer que la suite $\left(b_n\right)$ est géométrique. En déduire que, pour tout entier naturel $n$, $y_n = \dfrac{1}{2} - \dfrac{1}{2}\times \left(- \dfrac{1}{3}\right)^n$.
    12. Pour tout entier naturel $n$ on a :
      $\begin{align*} b_{n+1}&=y_{n+1}-\dfrac{1}{2} \\ &=-\dfrac{1}{3}y_n+\dfrac{2}{3}-\dfrac{1}{2} \\ &=-\dfrac{1}{3}y_n+\dfrac{1}{6} \\ &=-\dfrac{1}{3}\left(y_n-\dfrac{1}{2}\right)
      \end{align*}$
      La suite $\left(b_n\right)$ est donc géométrique de raison $-\dfrac{1}{3}$ et de premier terme $b_0=0-\dfrac{1}{2}=-\dfrac{1}{2}$
      Par conséquent $b_n=-\dfrac{1}{2}\times \left(-\dfrac{1}{3}\right)^n$
      Et $y_n=b_n+\dfrac{1}{2}=\dfrac{1}{2}-\dfrac{1}{2}\times \left(-\dfrac{1}{3}\right)^n$
      $\quad$
    13. Calculer $\displaystyle\lim_{n \to + \infty} y_n$. Interpréter le résultat.
    14. $-1<-\dfrac{1}{3}<1$ donc $\lim\limits_{n \to +\infty} \left(-\dfrac{1}{3}\right)^n=0$
      Ainsi $\lim\limits_{n \to +\infty} y_n=\dfrac{1}{2}$.
      $\quad$
      Cela signifie donc, qu’au bout d’un grand nombre de lancers, la probabilité d’obtenir une pièce du côté pile et une du côté face est de $50\%$.
      $\quad$

 

Exercice 4
Page
  • Vues: 18374

Rechercher