Baccalauréat S Métropole- La Réunion 12 septembre 2016 - Spécialité

Page 9 sur 10: Spécialité

Spécialité 5 points


Candidats AYANT SUIVI l'enseignement de spécialité mathématiques


On dispose d'un dé équilibré à 6 faces numérotées de 1 à 6 et de 3 pièces A, B et C ayant chacune un côté pile et un côté face. Un jeu consiste à lancer une ou plusieurs fois le dé. Après chaque lancer de dé, si l'on obtient 1 ou 2, alors on retourne la pièce A, si l'on obtient 3 ou 4, alors on retourne la pièce B et si l'on obtient 5 ou 6, alors on retourne la pièce C. Au début du jeu, les 3 pièces sont toutes du côté face.

  1. Dans l'algorithme ci-dessous, 0 code le côté face et 1 code le côté pile. Si $a$ code un côté de la pièce A, alors $1 - a$ code l'autre côté de la pièce A. $$\begin{array}{|ll|}\hline \text{Variables :} &a, b, c, d, s\text{ sont des entiers naturels}\\ &i, n \text{ sont des entiers supérieurs ou égaux à } 1\\ \text{Initialisation :}&a \text{ prend la valeur }0\\ &b\text{ prend la valeur }0\\ &c \text{ prend la valeur }0\\ &\text{Saisir }n\\ \text{Traitement :} & \text{Pour }i \text{ allant de 1 à } n \text{ faire }\\ &\begin{array}{|l} d \text{ prend la valeur d'un entier aléatoire compris}\\ \text{entre 1 et }6\\ \text{ Si } d \leqslant 2\\ \hspace{0.5cm} \begin{array}{|l} \text{ alors } a \text{ prend la valeur } 1 - a\\ \text{ sinon Si } d \leqslant 4\\ \hspace{1.5cm}\begin{array}{|l} \text{ alors } b \text{ prend la valeur } 1 - b\\ \text{ sinon } c \text{ prend la valeur } 1 - c \end{array}\\ \hspace{1cm}\text{ FinSi }\\ \end{array}\\ \text{ FinSi }\\ s \text{ prend la valeur } a + b + c\\ \end{array}\\ &\text{ FinPour }\\ \text{Sortie :}&\text{ Afficher }s\\ \hline \end{array}$$
    1. On exécute cet algorithme en saisissant $n = 3$ et en supposant que les valeurs aléatoires générées successivement pour $d$ sont 1 ; 4 et 2. Recopier et compléter le tableau donné ci-dessous contenant l'état des variables au cours de l'exécution de l'algorithme :
      $$\begin{array}{|l|c|c|c|c|c|c|} \hline \text{variables}&i&d&a&b&c&s\\ \hline \text{initialisation}&\text{X}&\text{X}& & & &\text{X}\\ \hline 1^{er}\text{ passage boucle Pour}& & & & & & \\ \hline 2^{ e}\text{ passage boucle Pour}& & & & & & \\ \hline 3^{ e}\text{ passage boucle Pour}& &&&&&\\ \hline \end{array}$$
    2. Cet algorithme permet-il de savoir si, après une exécution de $n$ tirages, les trois pièces sont du côté pile ?
  2. Pour tout entier naturel $n$, on note :
    $\bullet~~$ $X_n$ l'évènement: « À l'issue de $n$ lancers de dés, les trois pièces sont du côté face »
    $\bullet~~$ $Y_n$ l'évènement: « À l'issue de $n$ lancers de dés, une seule pièce est du côté pile et les autres sont du côté face»
    $\bullet~~$ $Z_n$ l'évènement: « À l'issue de $n$ lancers de dés, exactement deux pièces sont du côté pile et l'autre est du côté face»
    $\bullet~~$ $T_n$ l'évènement: « À l'issue de $n$ lancers de dés, les trois pièces sont du côté pile ».
    De plus on note, $x_n = p\left(X_n\right)$ ; $y_n = p\left(Y_n\right)$ ; $z_n = p\left(Z_n\right)$ et $t_n = p\left(T_n\right)$ les probabilités respectives des évènements $X_n$, $Y_n$, $Z_n$ et $T_n$.
    1. Donner les probabilités $x_0$ ,$y_0$, $z_0$ et $t_0$ respectives qu'au début du jeu il y ait 0, 1, 2 ou 3 pièces du côté pile.
    2. Recopier l'arbre ci-dessous et compléter les probabilités sur ses branches :
  3. Pour tout entier naturel $n$, on note $U_n$ la matrice ligne $\left(x_n y_n z_n t_n\right)$.
    1. Donner la matrice $U_0$.
    2. À l'aide de l'arbre précédemment rempli, déterminer la matrice carrée $M$ telle que, pour tout entier naturel $n$, $U_{n+1} = U_n \times M$.
  4. Démontrer que, pour tout entier naturel $n$, $U_n = U_0 \times M^n$.
  5. On admet que, pour tout entier $n \geqslant 1$,
    $$\left\lbrace \begin{array}{l} x_n = \dfrac{(- 1)^n + 3 \times \left(- \frac{1}{3}\right)^n + 3\times \left(\frac{1}{3}\right)^n + 1}{8}~\\ y_n = \dfrac{- 3 \times \left(- \frac{1}{3}\right)^n + 3 \times \left(\frac{1}{3}\right)^n - (- 1)^n \times 3 + 3}{8}\\ z_n = \dfrac{- 3 \times \left(- \frac{1}{3}\right)^n - 3 \times \left(\frac{1}{3}\right)^n + (- 1)^n\times 3 + 3}{8}\\ t_n = \dfrac{- (- 1)^n + 3 \times \left(- \frac{1}{3}\right)^n - 3\times \left(\frac{1}{3}\right)^n + 1}{8} \end{array} \right. $$
    1. Calculer la probabilité, arrondie à $10^{-3}$ près, qu'au bout de 5 lancers de dés, une seule des trois pièces soit du côté pile.
    2. Préciser si les affirmations suivantes sont vraies ou fausses. Une réponse non justifiée n'est pas prise en compte.
      $\bullet~~$ Première affirmation : « À l'issue d'un nombre pair de lancers de dés, les pièces peuvent être toutes les trois du côté pile ».
      $\bullet~~$ Deuxième affirmation: « Au cours du jeu, la probabilité que les pièces soient toutes les trois du côté pile peut être supérieure ou égale à $\dfrac{1}{4}$ ».
      $\bullet~~$ Troisième affirmation: « Au cours du jeu, la probabilité que les pièces soient toutes les trois du côté pile peut être supérieure ou égale à $0,249$ ».
Correction Spécialité
Page
  • Vues: 17908

Rechercher